8,940 research outputs found

    From cellular properties to population asymptotics in the Population Balance Equation

    Full text link
    Proliferating cell populations at steady state growth often exhibit broad protein distributions with exponential tails. The sources of this variation and its universality are of much theoretical interest. Here we address the problem by asymptotic analysis of the Population Balance Equation. We show that the steady state distribution tail is determined by a combination of protein production and cell division and is insensitive to other model details. Under general conditions this tail is exponential with a dependence on parameters consistent with experiment. We discuss the conditions for this effect to be dominant over other sources of variation and the relation to experiments.Comment: Exact solution of Eq. 9 is adde

    Effectiveness of the ADEC as a level 2 screening test for young children with suspected autism spectrum disorders in a clinical setting

    Get PDF
    Background The Autism Detection in Early Childhood (ADEC) is a clinician-administered, Level 2 screening tool. A retrospective file audit was used to investigate its clinical effectiveness. Method Toddlers referred to an Australian child development service between 2008 and 2010 (N?=?53, M age?=?32.2 months) were screened with the ADEC. Their medical records were reviewed in 2013 when their mean age was 74.5 months, and the original ADEC screening results were compared with later diagnostic outcomes. Results The ADEC had good sensitivity (87.5%) and moderate specificity (62%). Three behaviours predicted autism spectrum disorders (ASDs): response to name, gaze switching, and gaze monitoring (p???.001). Conclusions The ADEC shows promise as a screening tool that can discriminate between young children with ASDs and those who have specific communication disorders or developmental delays that persist into middle childhood but who do not meet the criteria for ASDs

    A probabilistic framework for forward model-driven SHM

    Get PDF
    A challenge for many structural health monitoring (SHM) technologies is the lack of available damage state data. This problem arises due to cost implications of damaging a structure in addition to issues associated with the feasibility and safety of testing a structure in multiple damage scenarios. Many data-driven approaches to SHM are successful when the appropriate damage state data is available, however the problem of obtaining data for various damage states of interest restricts their use in industry. Forward model-driven approaches to SHM seek to aid this challenge. This methodology uses validated physical models to generate predictions of the system at different damage states, providing machine learning strategies with training data, to infer decision bounds. An ideal forward model-driven SHM framework is one in which one or more physical models are able to produce predictions that are statistically representative of data obtained from the physical structure. Validation of these physical models requires observational data. As a result, validation is performed on a component or sub-system level where damage state data can be more easily obtained. This methodology requires the combination of several low-level physical models via a multi-level uncertainty integration technique. This paper outlines such a framework using uncertainty quantification technologies and statistical methods for combining low-level probabilistic models whilst accounting of discrepancies that may occur in interactions with other low-level models. The method contains several statistical techniques for accounting for model discrepancies that may occur at any point throughout the modelling process. Model discrepancies arise due to missing physics or simplifications and result in the model deviating from the observed physics even when the ‘true’ parameters of the model are known. By accounting for model discrepancies throughout the framework the approach allows for further insight into model form errors whilst also improving the techniques ability to produce statistically representative predictions across damage states. The paper presents the key stages highlighting the relevant technologies and application considerations. Additionally, a discussion of integration with current data-driven approaches and the appropriate machine learning tools is given for a forward model-driven SHM approach

    Bayesian history matching for structural dynamics applications

    Get PDF
    Computer models provide useful tools in understanding and predicting quantities of interest for structural dynamics. Although computer models (simulators) are useful for a specific context, each will contain some level of model-form error. These model-form errors arise for several reasons e.g., numerical approximations to a solution, simplifications of known physics, an inability to model all relevant physics etc. These errors form part of model discrepancy; the difference between observational data and simulator outputs, given the ‘true’ parameters are known. If model discrepancy is not considered during calibration, any inferred parameters will be biased and predictive performance may be poor. Bayesian history matching (BHM) is a technique for calibrating simulators under the assumption that additive model discrepancy exists. This ‘likelihood-free’ approach iteratively assesses the input space using emulators of the simulator and identifies parameters that could have ‘plausibly’ produced target outputs given prior uncertainties. This paper presents, for the first time, the application of BHM in a structural dynamics context. Furthermore, a novel method is provided that utilises Gaussian Process (GP) regression in order to infer the missing model discrepancy functionally from the outputs of BHM. Finally, a demonstration of the effectiveness of the approach is provided for an experimental representative five storey building structure

    Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)

    Get PDF
    The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6−0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N = 1 ← 0, J = 2 ← 1 and ortho-NH_2 1_(1,1) ← 0_(0,0). We also observed ortho-NH_3 1_0 ← 0_0, and 2_0 ← 1_0, para-NH_3 2_1 ← 1_1, and searched unsuccessfully for NH^+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11−54 km s^(−1) are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6 × 10^(−9), 3 × 10^(−9), and 3 × 10^(−9) for NH, NH_2, and NH_3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry

    Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State

    Full text link
    By considering the lack of history dependence in the non-equilibrium steady state of a quantum system we are led to conjecture that in such a system, there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analog of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective Free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot.Comment: References revised to take account of related work on Onsager reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan, Dufty and Rub

    Orbital assembly and maintenance study. Executive summary

    Get PDF
    A sound, practical approach for the assembly and maintenance of very large structures in space is presented. The methods and approaches for assembling two large structures are examined. The maintenance objectives include the investigation of methods to maintain five geosynchronous satellites. The two assembly examples are a 200-meter-diameter radio astronomy telescope and a 1,000-meter-diameter microwave power transmission system. The radio astronomy telescope operates at an 8,000-mile altitude and receives RF signals from space. The microwave power transmission system is part of a solar power satellite that will be used to transmit converted solar energy to microwave ground receivers. Illustrations are included

    Offside goals and induced breaches of contract

    Get PDF
    An analysis of Global Resources Group Ltd v Mackay which explores the possibility of building links between the offside goals rule and nominate delict of inducing breach of contract

    Perturbative behaviour of a vortex in a trapped Bose-Einstein condensate

    Get PDF
    We derive a set of equations that describe the shape and behaviour of a single perturbed vortex line in a Bose-Einstein condensate. Through the use of a matched asymptotic expansion and a unique coordinate transform a relation for a vortex's velocity, anywhere along the line, is found in terms of the trapping, rotation, and distortion of the line at that location. This relation is then used to find a set of differential equations that give the line's specific shape and motion. This work corrects a previous similar derivation by Anatoly A. Svidzinsky and Alexander L. Fetter [Phys. Rev. A \textbf{62}, 063617 (2000)], and enables a comparison with recent numerical results.Comment: 12 pages with 3 figure
    corecore