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a b s t r a c t

Computer models provide useful tools in understanding and predicting quantities of inter-

est for structural dynamics. Although computer models (simulators) are useful for a speci-

fic context, each will contain some level of model-form error. These model-form errors

arise for several reasons e.g., numerical approximations to a solution, simplifications of

known physics, an inability to model all relevant physics etc. These errors form part of

model discrepancy; the difference between observational data and simulator outputs, given

the ‘true’ parameters are known. If model discrepancy is not considered during calibration,

any inferred parameters will be biased and predictive performance may be poor. Bayesian

history matching (BHM) is a technique for calibrating simulators under the assumption

that additive model discrepancy exists. This ‘likelihood-free’ approach iteratively assesses

the input space using emulators of the simulator and identifies parameters that could have

‘plausibly’ produced target outputs given prior uncertainties. This paper presents, for the

first time, the application of BHM in a structural dynamics context. Furthermore, a novel

method is provided that utilises Gaussian Process (GP) regression in order to infer the miss-

ing model discrepancy functionally from the outputs of BHM. Finally, a demonstration of

the effectiveness of the approach is provided for an experimental representative five storey

building structure.

� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Calibration of computer models (herein defined as simulators) is often an important aspect of creating predictions that

adequately match observational data. However, simulators often contain model-form errors from various sources, such as

an absence and/or simplification of the physics and approximations in solution techniques. These errors form part of the

term model discrepancy, which is defined as the mismatch between observational data and the simulator output when the

‘true’ parameters are known. If a mechanism that accounts for model discrepancy is not included in the parameter estima-

tion approach, any parameters identified will be biased and may provide poor predictions, especially when extrapolating

[1,2]. Consequently, Bayesian History Matching (BHM) has been developed as a methodology for calibrating simulators

under the assumption that model discrepancy exists and can be treated as uncertain.

History matching as a term originates from the oil industry and describes methods that find parameters of simulators

where the outputs closely match data from historical reservoir production. Many of these techniques within the literature,

such as those reviewed by Oliver and Chen [3], are similar to classical model updating techniques well-established within

structural dynamics [4,5]. Nonetheless, Craig et al. adapted the idea of history matching from the oil industry and outlined
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an approximate Bayesian methodology that searched for all, rather than a single parameter match [6]. This category of

approaches was defined as Bayesian History Matching.

BHM has been implemented across a wide variety of applications, from its origins in oil reservoir modelling [6], to under-

standing Galaxy formation [7–9], complex social models of HIV transfer in populations [10,11] and climate science [12,13].

The method seeks to discard parts of the parameter space that were unlikely to produce outputs that match the observa-

tional data, given that observational and model discrepancy uncertainties exist. A key benefit of the approach is in gaining

an understanding about parameters in complex computer models where model discrepancy is present. In addition, Andri-

anakis et al. in [10] discuss utilising the method as a pre-calibration step before applying fully Bayesian analysis, such that

the parameter domain is well understood, and informative priors identified. However, none of the applications of BHM

within the literature apply the technique to a structural dynamic context, nor do they seek to identify the functional form

of the model discrepancy after the parameter distributions are estimated. Correspondingly, one of the primary novel contri-

butions of this paper is in providing a methodology for inferring the functional form of the model discrepancy after calibra-

tion via BHM. This is performed by using the maximum a posteriori (MAP) estimate of the inferred parameter posterior

distribution such that Gaussian Process (GP) regression models can be inferred to map between the simulator output and

a set of training observational data. This novel combined approach provides an alternative method to conventional Bayesian

calibration methods that consider model discrepancy within the parameter inference process [1,2,14–16].

Another benefit of BHM is that the approach is ‘likelihood-free’ meaning that input and output combinations can be

removed and added iteratively without invalidating the analysis. This means that the considered parameter domain can

be truncated based on physical understanding of the parameters, reducing non-identifiability issues and non-physical infer-

ences; which are often present in current Bayesian approaches to calibration that consider model discrepancy [1,2,14–16].

Moreover, by decoupling the parameter and model discrepancy estimation problem, BHM offers a further mechanism to pre-

vent against non-identifiability issues and non-physical inferences. The ‘likelihood-free’ approach also provides benefits in

allowing approximate Bayesian solutions to be identified when a valid likelihood is not possible to obtain.

The technique is designed to be computationally competitive, when compared to Bayesian sampling methods such as

Markov Chain Monte Carlo (MCMC), and therefore practical for complex simulators. By construction, BHM utilises

emulators—computationally efficient surrogate models—such that the parameter domain can be explored efficiently. Within

the literature both Bayes linear techniques [8,9] and Gaussian Process (GP) [10] emulators have been implemented. These

choices are popular as both provide estimates of code uncertainty [1]—the uncertainty introduced by replacing the simulator

with an emulator. Quantifying code uncertainty ensures that regions of the parameter space are not discarded until emulator

predictions are sufficiently ‘certain’.

The outline of this paper is as follows. Section 2 introduces BHM defining assumptions and aspects of implementation.

Following the methodology, a numerical case study is presented in Section 3 such that the effectiveness of BHM can be

demonstrated on an example where the true parameters are known. Next, BHM is demonstrated on experimental case study

of a representative five storey building structure, where masses are used to simulate pseudo-damage scenarios. This section

also outlines and implements the approach for inferring the functional form of the model discrepancy. Finally, conclusions

are discussed, highlighting areas for further research.

2. Methodology

BHM is an approximate Bayesian approach for determining whether parameter combinations H are ‘implausible’; that is

to say not likely to have produced known observations z. These implausible parameter combinations hI 2 H are discarded

based on a criteria such that the remaining non-implausible space hnI 2 H are identified. In terms of a statistical model,

BHM aims to calibrate,

zjðxÞ ¼ gjðx; hÞ þ dj þ ej ð1Þ

where zjðxÞ is the jth observational output given inputs x; gjðx; hÞ is the jth simulator given x and parameters h. The model

discrepancy and observational uncertainty are d and e respectively, where the simulator, model discrepancy and observa-

tional uncertainty are independent. Eq. (1) is similar to that proposed by Kennedy and O’Hagan in [1]; although here model

discrepancy is defined as constant and additive with respect to the inputs.

In order to calibrate Eq. (1), BHM explores the parameter space of the simulator iteratively, where each iteration is called

a wave. During a wave simulator outputs are assessed for various parameter combinations using an implausibility metric and

discarded if above a threshold T. As the method is required to assess a large parameter space, a computationally efficient

emulator is utilised. The technology used in constructing an emulator within BHM must also quantify code uncertainty

[1]—the uncertainty introduced by replacing the simulator with an emulator. This is important as code uncertainty prevents

regions of the parameter space from begin discarded due to poor emulation; instead these are retained until the emulator

sufficiently represents the simulator output. For this reason GP emulators are implemented—Bayesian, non-parametric

regression models [17,18]—as they will fit known simulator runs exactly (under a no noise assumption) and provide estima-

tions of code uncertainty when predicting away from known simulator runs. It is noted that Bayes linear techniques could

also be used, as these also quantify code uncertainty [8,9]. However, these approaches are approximation methods that

2 P. Gardner et al. /Mechanical Systems and Signal Processing 143 (2020) 106828



update beliefs using linear fitting, and are generally more applicable to scenarios where the simulator space is not well mod-

elled by a GP.

2.1. Gaussian process emulators

A GP emulator is constructed as,

gjðx; hÞ � GPjðmðx; hÞ; kððx; hÞ; ðx0; h0ÞÞÞ ð2Þ

where the jth simulator output is modelled as a GP, GPjð�; �Þ; taking both x and h as its arguments—it is noted that the emu-

lator is a map of both the inputs x and parameters h to the jth simulator output gjðx; hÞ. The GP emulator is fully defined by its

meanmð�Þ and covariance kð�; �Þ functions, which define the prior belief over the functions that could represent the simulator

output. Here the mean function is defined to be linear in the parameters, i.e.mð�Þ ¼ Hb, where H is comprised of p basis func-

tions H ¼ ðh1ð�Þ; . . . ; hpð�ÞÞ and there are p coefficients b ¼ ðb1; . . . ; bpÞ. Is it noted that the basis functions in H should reflect

the prior belief about gð�; �Þ, where typically no more than a constant or linear mean can be assumed a priori. The covariance

function states the prior assumption about how smooth the simulator output is. It defines the correlation between any two

points in a Reproducing Kernel Hilbert Space (RKHS) and is dependent on some set of hyperparameters /g, i.e. K ¼ kðð�; �Þ;/gÞ.
One example of a covariance function is the squared exponential covariance function,

kððx; hÞ; ðx0; h0ÞÞ ¼ r2
g exp �ðx� x

0ÞTXxðx� x
0Þ

� �

exp �ðh� h0ÞTXhðh� h0Þ
� �

ð3Þ

where the hyperparameters /g for the squared exponential are two diagonal matrices of roughness parameters i.e.

X ¼ diag x1; . . . ;xDð Þ and a signal variance r2
g (the reader is referred to [18] for more examples and definitions of covariance

functions). By forming a joint prior over the training (denoted y) and testing (denoted �) points, standard Gaussian condi-

tionals can be used to obtain the predictive distribution,

pðg�jx�; h�; y; x; h;/Þ ¼ N ðEðg�Þ;Vðg�ÞÞ ð4aÞ

Eðg�jx�; h�; y; x; h;/Þ ¼ H� bþ K�;y K
�1
y;y y � Hy b
� �

ð4bÞ

Vðg�jx�; h�; y; x; h;/Þ ¼ K�;� � K�;y K
�1
y;y Ky;� ð4cÞ

where g� are predictions of the simulator function at the test points and Eq. (4c) quantifies the code uncertainty. Due to the

focus of this paper being BHM and not GP regression, the reader is referred to [17–20] for more mathematical details.

It is noted that the computation cost of training a GP emulator isOðn3Þ (where n is the number of training points in Ky;y). It

is expected that in applications involving computationally expensive simulators the computational cost in training a GP

emulator will be insignificant compared to obtaining simulator evaluations. Nonetheless the computational cost in training

a GP emulator can become problematic when the mapping from inputs x and parameters h to the jth simulator output gjðx; hÞ
is complex compared to the prior (fully specified by mð�Þ and covariance kð�; �Þ), or when the parameter and input spaces are

significantly high dimensional, and therefore a large number of simulator evaluations are required to adequately train the

GP. However, in these scenarios sparse GP approximations can be utilised, where the computational cost of training the

GP emulator reduces from Oðn3Þ to Oðnm2Þ, where typically m � n and is a number of inducing points (for more details

on sparse GP emulators see [21]).

2.2. Implausibility metric

The implausibility metric Ið�; �Þ [10,11], used to determine whether a given parameter combination was likely to have pro-

duced the observed output, incorporates the emulators within its formulation,

Ijðx; hÞ ¼
jzjðxÞ � Ejðg� jx�; h�; y; x; h;/Þj

Vo;j þ Vm;j þ V c;jðx; hÞ
� �1=2

ð5Þ

where Vo;Vm and V cðx; hÞ are the variances associated with the observational, model discrepancy and code uncertainties;

V cðx; hÞ ¼ Vjðg� jx�; h�; y; x; h;/Þ. Eq. (5) is essentially the distance between observational data and emulator mean predictions

weighted by the uncertainties in the processes. Trivially, in the case where simulator runs are computationally cheap, the

emulator mean can be replaced with the simulator output and the code uncertainty term removed.

The implausibility metric requires specification of the observational and model discrepancy uncertainties, Vo and Vm. The

observational uncertainty Vo can often be estimated from expert knowledge and from the observational data. Model discrep-

ancy uncertainty Vm can be more challenging to define, but may be elicited from expert judgement. The likelihood-free prop-

erty of BHM means that the model discrepancy uncertainty can be refined during each wave. This means that sensitivity

analysis of the effect of Vm can be performed during a wave to understand changes in rejection rates and help improve
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its specification. Observational and model discrepancy uncertainties can be dependant on both inputs x and outputs zjðxÞ, i.e.
Vo;jðxÞ and Vm;jðxÞ, if input dependent hetroscedastic noise or model discrepancy are hypothesised.

The implausibility metric presented in Eq. (5) provides a quantity for every parameter combination h, input x and output

y. However a single value is required for each parameter combination in order to decide whether it should be removed. Sev-

eral extensions of the implausibility metric that deal with multiple outputs and inputs can be considered [10]. Firstly, a max-

imum implausibility can be formed,

ImaxðhÞ ¼ argmax
j

argmax
xi

Ijðx; hÞ
 !

ð6Þ

whereby the worst case for a given parameter combination is used. Another approach is to form a multivariate implausibility

metric for either the inputs,

ImultiðhÞj ¼ zjðxÞ � EðGPjðx; hÞÞ
� �T

Vo;j þ Vm;j þ V c;jðx; hÞ
� ��1

zjðxÞ � EðGPjðx; hÞÞ
� �

ð7Þ

or outputs,

Imultiðx; hÞ ¼ zjðxÞ � EðGPjðx; hÞÞ
� �T

Vo;j þ Vm;j þ V c;jðx; hÞ
� ��1

zjðxÞ � EðGPjðx; hÞÞ
� �

ð8Þ

which is equivalent to taking the Mahalanobis distance; assessing the Euclidean distance of the principal components (stan-

dard practice in outlier analysis [22]). Again a maximum can be taken over either Eq. (7), (8) to collapse the metric to a single

value for each parameter combination.

2.3. Decision threshold

In order to decide which parts of the parameter space to exclude, a threshold T is placed on the implausibility metric.

Large implausibilities (for each formulation) indicate a parameter set was very unlikely to have produced an output that

matched the observational data, given the included uncertainties. Using this knowledge, a rejection criteria can be formed

for a particular parameter combination h,

IðhÞ 6 T if h 2 hnI;

> T if h 2 hI

�

ð9Þ

where determining the value of T changes based on the type of implausibility metric considered.

Andrianakis et al. [10] state that a sensible threshold T for single Ijðx; hÞ or maximum ImaxðhÞ implausibilities (where the

maximum is of a single implausibility set) can be determined by Pukelsheim’s 3r rule [10]. The rule states that any contin-

uous unimodal distribution will contain at least 99.5% of probability mass within three standard deviations away from the

mean [23]. For multivariate implausibilities the threshold T can be set as a high percentile (e.g. a > 95%) from a chi-squared

distribution with either j, or the input size of x, degrees of freedom [10], i.e. T ¼ F�1
v2 ðaÞ the output from a chi-squared quan-

tile function (inverse Cumulative Density Function (CDF)). This can be thought of as performing a frequentist hypothesis test

on the parameter combination, using a chi-squared (v2) test.

2.4. Parameter domain exploration

During each wave BHM explores the parameter space using the implausibility metric and threshold. This requires sam-

pling the parameter domain using a design of experiments, and then running the simulator such that outputs can be

obtained with which to form the emulator; a Latin hypercube-based approach is a natural choice for constructing the emu-

lator. In this scenario the initial parameter space bounds are used in conjunction with a simulator budget to construct a Latin

hypercube design. In this paper Generalised Maximum Latin Hypercube (GMLHC) designs are used as this approach has been

shown to reduce the code uncertainty in GP emulators at the bounds of the design [24]; this is particularly useful in BHM, as

decisions about whether parameters near the bounds are implausible can be made without high emulator uncertainty. At

each wave a new GMLHC can be formed such that the non-implausible space from the last wave can be interrogated.

Once an emulator is constructed from a cost-effective number of simulator runs it is deployed in sampling the parameter

domain. In this paper parameter combinations are sampled from a uniform distribution bounded by the initial parameter

domain—effectively defining a uniform prior over the space. Emulator predictions are made for each of these samples and

a decision made regarding whether they should be discarded.

2.5. Algorithm

The algorithm for performing BHM is stated in Algorithm1. Two stopping criteria are constructed based on the following

outcomes: all the space is deemed implausible; or the code uncertainty in the non-implausible region is less than the

remaining uncertainties, i.e. V c;jðx; hnIÞ < Vo;j þ Vm;j. This second stopping criteria indicates that the emulator is at least as cer-

tain about its predictions as the modeller is with the uncertainties due to model discrepancy and observation variability.
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Algorithm1 Bayesian History Matching for Wave k

hk � GMLHC .Draw parameters from GMLHC

yk ¼ gðx; hkÞ .Run the simulator at parameters

hks � UðminðhkÞ;maxðhkÞÞ .n samples of the parameter space

forj = 1: No. of outputsdo

Train and validate GPjðx; hkÞ .Train and validate emulators

Eðg�Þ;V c;jðx; hks Þ
h i

¼ GPjðx; hks Þ .Predict at n samples of hk

Calculate Ijðx; hks Þ .Assess implausibility of samples

end for

Calculate Imaxðhks Þ
form ¼ 1 : ndo

if Imaxðhks;mÞ < Tthen

hknI ¼ hks;m .Keep non-implausible samples

end if

end for

bounds = ½minðhknIÞ;maxðhknIÞ� .Obtain new GMLHC bounds

if any ðVk
c;jðx; hÞ < ðVo;j þ Vm;jÞÞ or isempty (hknI)then

Stop .Stop if stopping criteria are met

end if

To illustrate BHM, Algorithm1 is applied to a simple numerical example (where the sampling stage is replaced with a

uniform grid). In the example a simulator constructed from Eq. (10a) models the experimental observation z, which is

obtained from the ‘true’ process with noise, stated in Eq. (10b); where e � Nð0;0:05Þ. The observation zð0:9Þ ¼ 3:39 has

observational and model discrepancy uncertainties, Vo ¼ 0:05 and Vm ¼ 0:04 (estimated from the residual variance

Vððz� eÞ � yÞÞ.
y ¼ gðhÞ ¼ 5:5 0:15 cosð2p� 0:75hÞ þ 1:25 sinð2p� 0:1hÞð Þ ð10aÞ

zðhÞ ¼ yðhÞ � 0:3 sinð2p� 0:15hÞ þ e ð10bÞ

Fig. 1a presents the experiential data point zð0:9Þ ¼ 3:39 with 	
ffiffiffiffiffiffi

Vo

p
intervals (shaded region) against the simulator and

bias-corrected outputs (i.e. z� e) across the parameter space hs ¼ f�0:5;0:005; . . . ;5gwhere a budget of four simulator eval-

uations have been performed in a space-filling manner h1 ¼ f0:75;1:25;1:75;2:25g. The observation z ¼ 3:39 can be formed

from two parameter 0:90 and 4:23 indicated by the cross-over in Fig. 1a.

BHM was performed following Algorithm1 with a simulator evaluation budget of four (for each space-filled design in

wave k) where the single implausibility metric IðhÞ and threshold T ¼ 3 are implemented. The emulator for each wave

was constructed from constant mean and squared exponential covariance functions. The first, second and fourth waves

are shown in Fig. 1.

In the first wave (Fig. 1b) the emulator predictions are most uncertain outside of h1 leading to these regions being clas-

sified as non-implausible. It can also be seen that the initial known simulator runs are deemed implausible, which can be

visually confirmed as they are not within the remaining uncertainty bounds z	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p
. Between these known simulator

runs the code uncertainty increases leading to the parameters, around 1 and 2, being classed as non-implausible. By the sec-

ond wave (Fig. 1c) additional simulator runs mean that the code uncertainty in the [0.75 2.25] interval are reduced below the

remaining uncertainties and all judged as implausible. Simulator runs at the parameter bounds ‘pin’ the code uncertainty

removing the domain edges as implausible. By the final wave (Fig. 1d where k ¼ 4) the code uncertainty has reduced across

the space and is lower than the remaining uncertainties in the non-implausible region. The non-implausible set hnI at this

wave clearly contain two regions around the solution 0:90 and 4:23.

2.6. Approximate posterior sampling

Once the final wave has identified a non-implausible parameter region, importance sampling [10] can be used to obtain

an approximation of the posterior distribution pðhjzÞ. The approximate posterior is formed from the ratio,

pðhjzÞ 
 wunðhqÞ
1
n

X

n

i¼1

wunðhqÞ
ð11Þ

P. Gardner et al. /Mechanical Systems and Signal Processing 143 (2020) 106828 5



where wunð�Þ are a set of un-normalised weights and hq are samples from a proposal distribution qðhqÞ. The un-normalised

weights wun ¼ pðzjhqÞpðhqÞ=qunðhqÞ are the probability of each sample hq � qun.

However, BHM is ‘likelihood-free’, and therefore an approximation of the likelihood must be formed. In this paper the

likelihood is approximated as,

pðzjhÞ 
 LðhÞ ¼
Y

M

j¼1

NðzðxÞjEjðGPjðx; hÞÞ;V jðx; hÞÞ ð12Þ

which is the product of multivariate Gaussian distributions over zðxÞ for the set of inputs x, where

V jðx; hÞ ¼ Vo;j þ Vm;j þ V c;jðx; hÞ. This approximation reflects the form of the implausibility metric. This assumes that these

sources of uncertainty are normally distributed. This is an acceptable assumption for the emulator and code uncertainty

due to the Gaussian form of the predictions. However, the assumption should be checked for the observational and model

discrepancy uncertainties for a given application.

The proposal distribution used in importance sampling must have adequate support. Here a multivariate Gaussian distri-

bution is used,

qunðhÞ ¼ N ðhjlnI;jRnIÞ ð13Þ

where lnI and RnI are the sample mean and variance–covariance from the non-implausible set after the last wave and j is an

inflation parameter to ensure good coverage of the space.

The choice of prior pðhÞ depends on the modellers beliefs from the last wave. However, it is often reasonable to assume a

constant prior over the final non-implausible set, due to the bounded approach for sampling the simulator in each wave. This

Fig. 1. BHM numerical example. Panel (a) presents the simulator, model discrepancy and observational data (where the shaded region is 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p
) and

the initial simulator are (�). Panels (b), (c) and (d) are BHM waves k ¼ 1;2;4. The top figure in these panels show the observational data with 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p

shaded region against the simulator and emulator predictions (where the shaded regions indicates 	3r), trained using the simulator runs gðhkÞ (�). The
bottom figures in these panels present the implausibility Iðhks Þ against the threshold T ¼ 3, where green regions are non-implausible and red implausible.
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means the weights in Eq. (11) become wun ¼ LðhqÞ=qunðhqÞ where hq are a number of samples from qun and the constant prior

essentially truncates the proposal samples to be within the final non-implausible domain.

Lastly the approximate posterior from Eq. (11) can be re-sampled in order generate direct samples from the approximate

posterior. This involves drawing Nq samples where the probability of occurrence is defined by the normalised weights

wðhqÞ ¼ wunðhqÞ=
P

wunðhqÞ.
Fig. 2 demonstrates importance sampling and re-sampling applied to the numerical example in Fig. 1, where Nq ¼ 10;000

and j ¼ 2. The re-sampled posterior samples are subsequently used to draw Monte Carlo realisations of the simulator and

bias-corrected output. The results show that the emulator has been adequately calibrated with the two parameter solutions

lying within the central probability mass. Furthermore the simulator and bias-corrected results lie within the given uncer-

tainty bounds. These uncertainty bounds are 	3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p
for the simulator, reflecting both the model discrepancy and

observational uncertainties, and 	3
ffiffiffiffiffiffi

Vo

p
for the bias-corrected output, where 3 standard deviations reflect Pukelsheim’s

3r rule.

3. Numerical case study: mass, tensioned wire system

BHM accounts for model discrepancy by defining a prior variance Vm, stating an assumption of uniform additive discrep-

ancy across the space. In order to illustrate its effectiveness a simple numerical example of a mass, tensioned wire system,

depicted in Fig. 3, is presented. In this case study the simulator output is the natural frequency of the system y ¼ xn, with the

input being an applied tension x ¼ T , and the calibration parameter being the mass h ¼ M. The simulator is formed from,

gðx; hÞ ¼ xnðT;MÞ ¼ 1

p

ffiffiffiffiffiffi

T

Ml

r

ð14Þ

where l ¼ 1m is the length. In this example model discrepancy is additive and sinusoidal defined as,

dðxÞ ¼ 0:5 sinð2p� 0:044xÞ. This form of model discrepancy is chosen as it could be defined as uniform and additive, which

is the assumption made within BHM. The observational data is obtained from,

zðxÞ ¼ gðx;5:43Þ þ dðxÞ þ e ð15Þ

where the ‘true’ mass is ĥ ¼ 5:43 and the observational uncertainty is e � Nð0;0:01Þ. Fig. 4a presents differences between

the simulator output (using the ‘true’ mass) and the realisation observational responses (where zðx�Þ are 50 realisations

of Eq. (15)).

The training data is shown in Fig. 4a, where the inputs are in 100 N steps from 200 N to 1000 N. The observational uncer-

tainties are depicted on the training data as 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVo þ VmÞ
p

intervals. In this numerical example the variances associated with

these uncertainties are known; Vo ¼ 0:01 and Vm ¼ 1=12 (calculated as the variance from a uniform distribution bounded [-

0.5 0.5]). A simulator budget of 15 runs was given for defining the parameter space, as evaluations of the simulator were

cheap for this case study; this number of runs allowed the emulator to adequately estimate the simulator in one wave, allow-

ing the case study to focus on the methods ability to account for model discrepancy. As the calibration example is one-

dimensional, i.e. only the mass is calibrated, a uniform grid is used to sample the space between [2 20] kg. The emulator

utilised in this case study was constructed from a linear mean function mðx; hÞ ¼ ½x; h�Tb, reflecting the prior assumption that

the natural frequency will increase with tension. In addition, a Matérn 3/2 covariance function was implemented, defining a

prior that assumes the simulator is a relatively smooth function.

A multivariate implausibility metric was implemented with a threshold calculated from the 99% quantile of a 9 degree-

of-freedom v2-distribution. 50;000 uniformly distributed samples were used to explore the parameter domain and the

approximate posterior was sampled 10;000 times. Due to the emulator being trained from an adequate number of simulator

runs, BHM reached the stopping criteria after one wave. The approximate posterior is depicted in Fig. 4b, where the ‘true’

mass (5.43 kg) is shown in red and the MAP estimate (5.44 kg) in blue. The mean squared error between the simulator (with

the ‘true’ mass) and the MAP estimate from BHM for the test inputs was 2� 10�5Hz, showing an excellent fit; where the test

inputs were 200 evenly space points between [200 1000]N.

This simple case study demonstrates the applicability of BHM for calibrating a simulator whilst accounting for model dis-

crepancy. This well-controlled case study provides motivation for applying BHM to a more complex experimental case study

in section 4.

4. Experimental case study: five storey shear structure

An experimental case study of a representative five storey building structure is presented in order to demonstrate the

effectiveness of BHM. The aim of calibration in this scenario was to infer the material properties h ¼ fE; m;qg (elastic mod-

ulus, Poisson’s ratio and density respectively) of the columns and floors of an Finite Element (FE) model, using observational

data from a representative building structure made from aluminium 6082. In this case study the simulator has been created

such that model-form errors, caused by a simplification of the attachments to ground and of the bolted joints (modelled as

bonded), are present. These issues cause a clear model discrepancy particularly in the first natural frequency, highlighting
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the need for BHM—it is noted that despite these model-form errors, only the material properties are calibrated. The quan-

tities of interest were the first five bending natural frequencies of the structure under different masses,

m ¼ f0;0:1; . . . ;0:5g kg, added to the fourth floor of the building—simulating pseudo-damage extents.

The calibration process is presented in section 4.1, where the posterior distribution over the parameters is identified. Fol-

lowing calibration, section 4.2 outlines a method for inferring the functional form of the model discrepancy, leading to pre-

dictions that are bias-corrected, i.e. account for the model discrepancy. Validation of these bias-corrected predictions is

subsequently performed in section 4.3, highlighting the benefits of the novel combined approach.

Modal testing was performed via an electrodynamic shaker; where the setup is shown in Fig. 5. The excitation was band-

limited Gaussian noise, with a bandwidth of 409.6 Hz; where 40 averages were obtained for each test. The sample rate and

time were chosen such that the frequency resolution was 0.05 Hz. Five accelerometers were placed on each of the five floors

to measure the first five bending modes. For each mass, ten repeats were conducted in order to obtain an understanding of

the underlying modal frequency distributions.

The simulator gðx; hÞwas a modal FE model, where the five bending natural frequencies were extracted as a set of outputs

y. Evaluations of the simulator were acquired for the six damage extents x ¼ f0;0:1; . . . ;0:5g kg. The model parameters h

were: elastic modulus E, Poisson’s ratio m and density q. The prior bounds on h were 	15% of typical material properties

for aluminium 6082, shown in Table 1. A fifteen point, three dimension GMLHC was used to sample the parameter space,

with an independent five point, three dimension GMLHC for validation.

The training observational data zðxÞ used within the calibration process were the average natural frequencies when

x ¼ f0;0:3;0:5g kg. The unseen validation data set zðx�Þ were the full repeat measurements at x� ¼ f0:1;0:2;0:4g kg.

4.1. Bayesian history matching

BHM was implemented as outlined in Algorithm1. Five independent GP emulators were constructed from the training

GMLHC, such that the output natural frequencies could be predicted1. Each of the five emulators were constructed from a lin-

ear mean function mðx; hÞ ¼ ½x; h�Tb and Matérn 3/2 covariance function. Exploration of the parameter domain was performed

via propagating 100,000 samples from a uniform distribution over the bounds through the GP emulators (where each emulator

was trained from fifteen simulator runs and validated against five separate simulator runs).

Fig. 2. Posterior and predictive samples from a BHM numerical example. The top panel shows the approximate posterior pðhjzÞ. The middle panel presents

the simulator output pðyjh; zÞ given these posterior samples, where the black line denotes the ‘true’ value and the grey lines are 	3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p
. The bottom

panel shows the bias-corrected output pðz� jh; zÞ (where z� ¼ z� e) given the posterior samples, where the black line denotes the ‘true’ value and the grey

lines are 	3
ffiffiffiffiffiffi

Vo

p
.

Fig. 3. Schematic of the mass, tensioned wire system.

1 It is noted that the simulator outputs will not be independent; an area of further research is in implementing multivariate GP emulators [25,26] within

BHM.
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Fig. 4. A comparison of observational data, simulator predictions and BHM inferences. Panel (a) presents the output predictions, where the red points ð�Þ
are the observational data with	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p
bounds. Panel (b) shows the predicted posterior distribution with the MAP estimate (blue) against the true mass

value (red).

Fig. 5. Representative five storey building structure. Panel (a) show the test setup and panel (b) presents an example of the pseudo-damage, glued added

masses, applied to the fourth floor.

Table 1

The prior parameter bounds for BHM on the five storey represen-

tative building structure.

Parameter Lower Bound Upper Bound

Elastic Modulus E 60:35 GPa 81:65 GPa

Poisson’s Ratio m 0:2805 0:3795

Density q 2354:5 kg/m3 3185:5 kg/m3

Table 2

The process uncertainties defined in the implausibility measure utilised for performing BHM on the five storey representative building structure.

Uncertainty x1 x2 x3 x4 x5

Observational Vo 0:003 0:001 0:01 0:331 0:141

Model Discrepancy Vm 1:50 0:01 0:01 0:01 0:01
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The multivariate implausibility metric (Eq. (7)) was implemented with the non-implausibility criteria being when the

maximum multivariate implausibility for all five outputs (the five natural frequencies) was less than the 99% quantile for

a three degree-of-freedom v2-distribution (reflecting the size of the training inputs x). Table 2 outlines the process uncer-

tainties utilised in the implausibility metric. Observational variances Vo;j were estimated for each natural frequency from

the variance of the output training data. The model discrepancy variances were determined using expert judgement; the

simulators prediction of the first natural frequency was know to provide poor predictive performance and therefore was

given a large variance, whereas the other remaining outputs were more accurate, leading to smaller prior model discrepancy

variances.

The stopping criteria was met after one wave, as the emulators inferred code uncertainties were less than the total pro-

cess uncertainties for each output—diagnostic checks using methods outlined in [19] were also used to confirm the inferred

emulators were valid. After the first wave a non-implausible space 
 2:8% of the original space was identified.

In order to visualise the non-implausible space, minimum implausibility and optical depth plots were created. These

quantities divide the parameter space into ‘bins’ within which each of the 100;000 samples (from the uniform parameter

domain sampling) are placed. Minimum implausibility takes the lowest value of implausibility below the threshold for

the set of samples within a given bin. This provides an indication of which parts of the parameter space can be discarded

irrespective of the other parameters. Optical depth is the ratio between non-implausible samples and the total number of

samples within a given bin, providing an estimate of the probability of finding a non-implausible parameter combination

given the set within a bin. Fig. 6 presents these quantities after the first wave when each parameter is divided into thirty

bins. Here it can be seen that the outputs, as expected, are relatively insensitive to changes in Poisson’s ratio. Furthermore,

there is a clear linear correlation between the non-implausible space of the elastic modulus and density, displayed in the

bottom left and top right quadrants of Fig. 6.

Once the stopping criteria has been met approximate posterior densities can be formed using importance sampling and

re-sampling. In this case, a Gaussian proposal distribution with j ¼ 1:5 was used to generate 100;000 samples with which to

assess the normalised weights using the methodology presented in Section 2.6. 100;000 samples were subsequently

obtained by re-sampling the posterior distribution. Fig. 7 presents the marginal and pairwise joint posterior distributions,

which are visually similar to the minimum implausibility and optical depths; with a linear relationship between density

and elastic modulus and a relatively insensitive effect from Poisson’s ratio in the pairwise joint distributions. Fig. 8 displays

the marginal posterior distribution for each parameter, all showing slightly bi-modal distributions. The marginal distribu-

tions are in contact with the bounds of the prior parameter domain. This demonstrates a known strength of BHM, as the

bounds constrain calibration to physical values. If these bounds were not used then non-physical parameter inferences

may be arrived at, due to the existence of model discrepancy.

The output distributions for each of the five natural frequencies were obtained via Monte Carlo sampling the posterior

parameter distribution. 1;000 samples were taken from the re-sampled parameter posterior distributions and propagated

through each of the five emulators in order to obtain realisations of the output distributions. As the code uncertainty across

all emulators were low, each emulator mean was taken as deterministic and the GPs were not sampled. The mean predic-

tions of the GP emulators for the 1000 Monte Carlo realisations are presented in Fig. 9. The predictions are shown against the

observational data used within BHM zðxÞ with 	cr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo;j þ Vm;j

p

bounds; where cr is the standard deviation associated with

99% probability mass of a standard normal (assuming output distributions to be approximately Gaussian). Fig. 9 demon-

strates that all five outputs are within the defined uncertainty bounds. However large discrepancies between the experimen-

tal observations and simulator outputs (represented by the five emulator’s mean predictions) occur, especially for the first

and fifth natural frequencies. This illustrates that the simulator has model-form errors, that would lead to incorrect param-

eter inference if model discrepancy was not considered in the calibration process.

4.2. Model discrepancy inference

Inferring the functional form of the model discrepancy is important, as it provides a mechanism for targeting model

improvements and quantifying simulator adequacy, i.e. a large model discrepancy will infer that the simulator may not

be fit for purpose. In light of this aim, a method is proposed for inferring the functional form of the model discrepancy using

the inferred parameter estimates from BHM. The approach involves utilising GP regression to infer the functional difference

between the calibrated simulator output and the observational data, at a set of training points. This sections outlines and

demonstrates the approach for the five storey building structure case study.

The method begins by obtaining the parameter MAP estimates from the posterior distribution identified by BHM, i.e.

hMAP ¼ max pðhjzÞ. The calibrated simulator output is subsequently obtained by evaluating the GP emulators at this cali-

brated value i.e. pðg�;jjx�; h�; yj; x; hMAP;/Þ, as the emulators have been established to approximate the simulator well during

BHM. The mean prediction from these emulators, Eq. (4b), is taken to be the calibrated simulator output, gðx; hMAPÞ. Model

discrepancy is subsequently modelled as a GP regression model (with a Gaussian noise variance) that maps between the cal-

ibrated simulator output (for all outputs) to the experimental data, i.e. GPj;d : gðx; hMAPÞ ! zjðxÞ. Once constructed, bias-

corrected outputs are obtained pðz�;jjx�; zj; y; x; hMAP;/d;jÞ, that account for model discrepancy. It is noted that this method

does not propagate the parameter uncertainty from the posterior distribution through to the model discrepancy inference

stage, and therefore this uncertainty is not reflected in the bias-corrected predictions. Uncertainty propagation of the param-
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eter uncertainty is therefore highlighted as an area of further research. Likewise, implementing the approach with multi-

output GP regression models should also be pursued as further research.

The outlined approach was applied to the five storey building structure case study. Five independent GP regression mod-

els were again constructed but here mapping from the calibrated emulator outputs to the ten repeat observations (aiding

estimation of the observational uncertainty) at the training inputs x ¼ f0;0:3;0:5g kg. The GP priors were modelled using

zero mean functions and Matérn 3/2 covariance functions. The bias-corrected output predictions are displayed in Fig. 10

and the inferred model discrepancy functions in Fig. 11.

The inferred model discrepancies in Fig. 11 capture part of the missing physics. It can be observed for the first, second and

fourth natural frequencies that the discrepancies increase with mass, and that the first natural frequency has a large discrep-

ancy of around 2 Hz. In contrast, the model discrepancies for the third and fifth natural frequencies indicate that the cali-

brated simulator closely matched the observational data, and therefore the model discrepancy functions likely capture a

‘noise’ process rather than any particular missing physics. These discrepancies would lead the modeller in targeting

improvements to the simulator that corrects the first natural frequency most, and that account for the relatively linear

increase in natural frequency with mass that the simulator currently fails to capture.

4.3. Validation

Validation metrics are applied to the bias-corrected predictions from the joint BHM and GP regression approach in order

to assess the methods effectiveness. Normalised Mean Squared Errors (NMSEs) were used to assess the mean predictive per-

formance; defined as,

NMSE ¼ 100

Nr2
z�

X

ðz�ðxÞ � ẑ�ðxÞÞ2 ð16Þ

-1e-12

1.1

2.3

3.4

4.5

5.7

6.8

7.9

9.1

10

11

0

0.031

0.063

0.094

0.13

0.16

0.19

0.22

0.25

0.28

0.31

Fig. 6. Minimum implausibility and optical depth plots for the first wave of BHM on the representatives five storey building structure. Each quadrant is a

comparison of two parameter combinations for the given metric, e.g. the top right quadrant is q against E for minimum implausibility and the bottom left E

against q for optical depth.

Fig. 7. Marginal and pairwise joint posterior distributions for the first wave of BHM on the representatives five storey building structure, where a darker

shade represents a higher probability.
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where z�ðxÞ are the output test data, r2
z�, the variance of the output test data and ẑ�ðxÞ, the mean test predictions. A score of

zero indicates a mean prediction without any error; conversely, a score of 100 represents a scenario where the prediction is

no better than taking the mean of the true values Eðz�ðxÞÞ. Table 3 presents the scores for each natural frequency demonstrat-

ing good predictive performance (as they are all below five). Predictive performance was found to be poorest for the second

natural frequency, which is due to the discrepancy when x ¼ 0:1 kg.

The approach in this paper is probabilistic and as such the complete predictive distributions should be assessed. In this

case, three statistical distances are applied: the Area Metric, Hellinger distance and MaximumMean Discrepancy (MMD) dis-

tance, which measure the distance between two probability measures, P andQ. The Area Metric [27] is the L1-norm between

two CDFs (FðxÞ),

DAreaðP;QÞ ¼
Z

jFPðxÞ � FQ ðxÞjdx ð17Þ

where the units of the Area Metric are that of the quantities of interest. The units therefore make this a useful validation

metric. Additionally, the Area Metric assess the distance between CDFs, this means that an empirical CDF can be used to pro-

vide a non-parametric estimation of the observation distributions. The second validation metric considered is the Hellinger

distance; the L2-norm between two Probability Density Functions (PDFs) (pðxÞ),

DHðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

Z

ffiffiffiffiffiffiffiffiffiffiffi

pPðxÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffi

pQ ðxÞ
q

� �2

dx

s

: ð18Þ

where the metric is bounded [0 1]. These bounds mean the Hellinger distance is good at objectively comparing predictions at

different scales, as zero means the distributions are the same, and one, that the distributions are completely different. The

final validation metric is the MMD distance, which is the maximum distance between the mean embeddings of two sample

sets in a RKHS, calculated as,

DMMDðP;QÞ ¼ sup
f2F

Exðf ðxÞÞ � Eyðf ðyÞÞ
�

�

�

� ð19Þ

where the projection is performed by the function class F , where the function f is called a reproducing kernel kð�; �Þ [28], and
x and y are samples from P and Q respectively. The distance is non-parametric and has a lower bound of zero. A popular

choice of kernel is the radial basis kernel [28,29], where the median pairwise distance among the joint data is commonly

used to infer the hyperparameters [30].

The three validation metrics are applied to the output predictions and observational samples for each of the five natural

frequency. Numerical integration is used to infer both the Area Metric and Hellinger distance, where an empirical CDF and

kernel density estimate are used to approximate the observational distribution for both the Area Metric and Hellinger dis-

tance respectively. Due to the MMD being sample based, ten samples were obtained from predictive distributions such that

the distance could calculated between these samples and the observational samples. This procedure was repeated 100 times

in order to obtain the average MMD distance, which should be more robust to the predictive distribution sampling. Further-

more, the MMD distance was implemented using a radial basis kernel, reflecting the expected Gaussian-form of the obser-

vational data, where the hyperparameters were inferred using the median heuristic. The distances are presented in Fig. 12.

The Area Metric values, shown in Fig. 12a, are relatively small—of the order 10�3—providing evidence that the predictive

distributions are close the observational data. The largest distance is for the fifth natural frequency at 0 kg, which is likely

due to the spread of observation samples at 0 kg, with one data point, which potentially is an outlier, lying far from the

Fig. 8. Marginal posterior distributions for the first wave of BHM on a representatives five storey building structure. The red lines indicate the MAP

estimates.
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others. The next relatively large distances are for the 0.1 kg case for all natural frequencies. These are due to the offset in the

predictive mean. This result is further evidenced in the Hellinger distances, Fig. 12b, where the 0.1 kg case produces rela-

tively large distances, i.e. close to 0.5. The MMD distances also identify the 0.1 kg case as producing the largest distances.

This discrepancy at the 0.1 kg mass input is due to the training data not providing enough information about the functional

trend for this input. More training data would therefore improve the predictive performance at this location. Additionally,

improvements to the simulator could aid predictions at 0.1 kg.

Finally, the MMD witness function was evaluated for the second natural frequency in order to further investigate its per-

formance, due to it having the largest NMSE. The MMD witness function f
�ð�Þ, is the difference between two kernel embed-

dings, defined over the variable t as,

f
�ðtÞ / 1

m

X

m

i¼1

k xi; tð Þ � 1

n

X

n

j¼1

k yi; tð Þ ð20Þ

Fig. 9. 1000 samples of the BHM predictive outputs, EðpðgðiÞ
�;jjx�; yj; x; h

ðiÞ;/g;jÞÞ given hðiÞ � pðhjZ; xzÞ. The error bounds are 	cr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vo þ Vm

p
.
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where fxigmi¼1 and fyjgnj¼1
are the two sample sets. The witness function provides a visualisation of the difference between two

distributions and is zero intuitively where the two distributions are the same, positive when P is larger thanQ, and negative

when Q is greater than P, as far as the smoothness constraint allows. Therefore, high values, whether positive or negative,

indicate a large difference between the predictive and observational distributions.

Fig. 13 presents the witness function for the second natural frequency predictions. The 0, 0.3, 0.4 and 0.5 kg cases have

low witness function magnitudes, which is expected for the training data x ¼ f0; 0:3;0:5g kg but shows good predictive per-

formance for 0.4 kg. It can also be seen that the 0.4 kg predictive distribution is narrower than the observational data (indi-

cated by negative values about the mode), meaning the results are not conservative. The mode is also under-estimated for

the 0.1 and 0.2 kg cases however, the variance for the 0.2 kg case is conservative, covering the observational prediction.

Inclusion of the parameter uncertainty may inflate these predictive distributions, potentially improving predictive perfor-

mance, or at least making the distributions more conservative.

5. Conclusions

Model discrepancy poses challenges in calibrating structural dynamics simulators. Without accounting for the presence

of model discrepancy, any parameter estimate will be biased and predictive performance potentially poor. In this paper it has

been demonstrated that BHM provides a methodology for calibrating simulators whilst assuming an additive model discrep-

ancy. The approach has been demonstrated to be successful on both a numerical case study and on an experimental five

Fig. 10. The bias-corrected predictive outputs from the combined BHM and GP regression approach; the shaded regions indicate 	3r.
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storey building structure. Furthermore, a method has been outlined for inferring model discrepancy functional forms. The

novel combined technique has been shown to provide improved predictive performance and a greater insight into simulator

inadequacies.

BHM is an effective method for discarding parameter space iteratively in a ‘likelihood-free’ manner. This approach means

that difficult-to-emulate outputs, or input combinations, can be excluded and reintroduced between waves when they are

more defined; this is not possible in a likelihood based approach. By separating parameter inference frommodel discrepancy

learning the technique removes non-identifiability problems, provided its assumptions are appropriate. Furthermore, by

utilising importance sampling approximations of the posterior parameter distribution can be obtained. There are avenues

for further research into optimal sampling methods for assessing the parameter space, with sequential design methods

potentially providing an effective method for reducing the number of simulator evaluations required to construct effective

emulators. Multivariate GP emulators should also be incorporated, such that a more informative prior can be used for depen-

dent outputs.

Themodel discrepancy inference technique outlined in this paper, constructs GP regressionmodels thatmap the calibrated

simulator outputs to experimental observations. This approach has been demonstrated to be effective in learning such func-

Fig. 11. Inferred model discrepancies; the shaded regions indicate 	3r.

Table 3

Normalised mean squared errors (NMSEs) between bias-corrected output predictions and experimental data.

x1 x2 x3 x4 x5

NMSE 1:51 4:31 0:47 0:02 0:08
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tions from a small number of data points. Further research should be conducted into propagating the full parameter distribu-

tions in a computationally efficient manner, without the need for constructing a large quantity of GP models. Additionally,

research should be conducted into physically constraining these GPs such that prior knowledge is utilised effectively.

Nonetheless, the work presented in this paper demonstrates an effective methodology for both calibrating computer models

when model discrepancy is present, and inferring the functional form of that model discrepancy. The approach has been

shown to improve predictive performance and aid in identification of improvements to the computer model.
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