9 research outputs found

    The Dusty Tori of Nearby QSOs as Constrained by High-Resolution Mid-IR Observations

    Get PDF
    We present mid-infrared (MIR; 7.5–13.5 μm) imaging and spectroscopy observations obtained with the CanariCam (CC) instrument on the 10.4-m Gran Telescopio CANARIAS for a sample of 20 nearby, MIR bright and X-ray luminous quasi-stellar objects (QSOs). We find that for the majority of QSOs the MIR emission is unresolved at angular scales ∼0.3 arcsec, corresponding to physical scales ≲ 600 pc. We find that the higher-spatial resolution CC spectra have similar shapes to those obtained with Spitzer/IRS, and hence we can assume that the spectra are not heavily contaminated by extended emission in the host galaxy. We thus take advantage of the higher signal-to-noise ratio Spitzer/IRS spectra, as a fair representation of the nuclear emission, to decompose it into a combination of active galactic nuclei (AGN), polycyclic aromatic hydrocarbon (PAH) and stellar components. In most cases, the AGN is the dominant component, with a median contribution of 85 per cent of the continuum light at MIR (5–15 μm) within the IRS slit. This IR AGN emission is well reproduced by clumpy torus models. We find evidence for significant differences in the parameters that describe the dusty tori of QSOs when compared with the same parameters of Seyfert 1 and 2 nuclei. In particular, we find a lower number of clouds (N0 ≲ 12), steeper radial distribution of clouds (q ∼ 1.5–3.0) and clouds that are less optically thick (τV ≲ 100) than in Seyfert 1, which could be attributed to dusty structures that have been partially evaporated and piled up by the higher radiation field in QSOs. We find that the combination of the angular width σtorus, viewing angle i, and number of clouds along the equatorial line, N0, produces large escape probabilities (Pesc \u3e 2 per cent) and low geometrical covering factors (f2 ≲ 0.6), as expected for AGN with broad lines in their optical spectra

    The Mexican consensus on non-cardiac chest pain

    Get PDF
    Introduction: Non-cardiac chest pain is defined as a clinical syndrome characterized by ret-rosternal pain similar to that of angina pectoris, but of non-cardiac origin and produced byesophageal, musculoskeletal, pulmonary, or psychiatric diseases. Aim: To present a consensus review based on evidence regarding the definition, epidemiology,pathophysiology, and diagnosis of non-cardiac chest pain, as well as the therapeutic options forthose patients. Methods Three general coordinators carried out a literature review of all articles published inEnglish and Spanish on the theme and formulated 38 initial statements, dividing them into 3 maincategories: 1) definitions, epidemiology, and pathophysiology, 2) diagnosis, and 3) treatment.The statements underwent 3 rounds of voting, utilizing the Delphi system. The final statementswere those that reached > 75% agreement, and they were rated utilizing the GRADE system. Results and conclusions The final consensus included 29 statements. All patients presentingwith chest pain should initially be evaluated by a cardiologist. The most common cause of non-cardiac chest pain is gastroesophageal reflux disease. If there are no alarm symptoms, the initialapproach should be a therapeutic trial with a proton pump inhibitor for 2-4 weeks. If dysphagiaor alarm symptoms are present, endoscopy is recommended. High-resolution manometry isthe best method for ruling out spastic motor disorders and achalasia and pH monitoring aidsin demonstrating abnormal esophageal acid exposure. Treatment should be directed at thepathophysiologic mechanism. It can include proton pump inhibitors, neuromodulators and/orsmooth muscle relaxants, psychologic intervention and/or cognitive therapy, and occasionallysurgery or endoscopic therapy

    Consenso mexicano sobre dolor torácico no cardiaco

    Get PDF
    Introducción: Dolor torácico no cardíaco (DTNC) se define como un síndrome clínico caracte-rizado por dolor retroesternal semejante a la angina de pecho, pero de origen no cardiaco ygenerado por enfermedades esofágicas, osteomusculares, pulmonares o psiquiátricas.Objetivo: Presentar una revisión consensuada basada en evidencias sobre definición, epidemio-logía, fisiopatología, diagnóstico y opciones terapéuticas para pacientes con DTNC.Métodos: Tres coordinadores generales realizaron una revisión bibliográfica de todas las publi-caciones en inglés y espa˜nol sobre el tema y elaboraron 38 enunciados iniciales divididosen tres categorías principales: 1) definiciones, epidemiología y fisiopatología; 2) diagnóstico,y 3) tratamiento. Los enunciados fueron votados (3 rondas) utilizando el sistema Delphi, y losque alcanzaron un acuerdo > 75% fueron considerados y calificados de acuerdo con el sistemaGRADE. Resultados y conclusiones: El consenso final incluyó 29 enunciados Todo paciente que debutacon dolor torácico debe ser inicialmente evaluado por un cardiólogo. La causa más común deDTNC es la enfermedad por reflujo gastroesofágico (ERGE). Como abordaje inicial, si no existensíntomas de alarma, se puede dar una prueba terapéutica con inhibidor de bomba de pro-tones (IBP) por 2-4 semanas. Si hay disfagia o síntomas de alarma, se recomienda hacer unaendoscopia. La manometría de alta resolución es el mejor método para descartar trastornosmotores espásticos y acalasia. La pHmetría ayuda a demostrar exposición esofágica anormal alácido. El tratamiento debe ser dirigido al mecanismo fisiopatológico, y puede incluir IBP, neu-romoduladores y/o relajantes de músculo liso, intervención psicológica y/o terapia cognitiva,y ocasionalmente cirugía o terapia endoscópica. ABSTRACT Introduction: Non-cardiac chest pain is defined as a clinical syndrome characterized by retros-ternal pain similar to that of angina pectoris, but of non-cardiac origin and produced byesophageal, musculoskeletal, pulmonary, or psychiatric diseases.Aim: To present a consensus review based on evidence regarding the definition, epidemiology,pathophysiology, and diagnosis of non-cardiac chest pain, as well as the therapeutic options forthose patients. Methods: Three general coordinators carried out a literature review of all articles published inEnglish and Spanish on the theme and formulated 38 initial statements, dividing them into 3 maincategories: (i) definitions, epidemiology, and pathophysiology; (ii) diagnosis, and (iii) treatment.The statements underwent 3 rounds of voting, utilizing the Delphi system. The final statementswere those that reached > 75% agreement, and they were rated utilizing the GRADE system.Results and conclusions: The final consensus included 29 statements. All patients presentingwith chest pain should initially be evaluated by a cardiologist. The most common cause ofnon-cardiac chest pain is gastroesophageal reflux disease. If there are no alarm symptoms, the initial approach should be a therapeutic trial with a proton pump inhibitor for 2-4 weeks. Ifdysphagia or alarm symptoms are present, endoscopy is recommended. High-resolution mano-metry is the best method for ruling out spastic motor disorders and achalasia and pH monitoringaids in demonstrating abnormal esophageal acid exposure. Treatment should be directed at thepathophysiologic mechanism. It can include proton pump inhibitors, neuromodulators and/orsmooth muscle relaxants, psychologic intervention and/or cognitive therapy, and occasionallysurgery or endoscopic therapy

    The dusty tori of nearby QSOs as constrained by high-resolution mid-IR observations

    Get PDF
    We present mid-infrared (MIR; 7.5-13.5 μm) imaging and spectroscopy observations obtained with the CanariCam (CC) instrument on the 10.4-m Gran Telescopio CANARIAS for a sample of 20 nearby, MIR bright and X-ray luminous quasi-stellar objects (QSOs).We find that for the majority of QSOs the MIR emission is unresolved at angular scales~0.3 arcsec, corresponding to physical scales ≲600 pc. We find that the higher-spatial resolution CC spectra have similar shapes to those obtained with Spitzer/IRS, and hence we can assume that the spectra are not heavily contaminated by extended emission in the host galaxy. We thus take advantage of the higher signal-to-noise ratio Spitzer/IRS spectra, as a fair representation of the nuclear emission, to decompose it into a combination of active galactic nuclei (AGN), polycyclic aromatic hydrocarbon (PAH) and stellar components. In most cases, the AGN is the dominant component, with a median contribution of 85 per cent of the continuum light at MIR (5-15 μm) within the IRS slit. This IR AGN emission is well reproduced by CLUMPY torus models. We find evidence for significant differen ces in the parameters that describe the dusty tori of QSOs when compared with the same parameters of Seyfert 1 and 2 nuclei. In particular, we find a lower number of clouds (N0 ≲ 12), steeper radial distribution of clouds (q ~ 1.5-3.0) and clouds that are less optically thick (τ V ≲ 100) than in Seyfert 1, which could be attributed to dusty structures that have been partially evaporated and piled up by the higher radiation field in QSOs. We find that the combination of the angular width σ torus , viewing angle i, and number of clouds along the equatorial line, N0, produces large escape probabilities (P esc > 2 per cent) and low geometrical covering factors (f 2 ≲ 0.6), as expected for AGN with broad lines in their optical spectra
    corecore