20 research outputs found

    The Origin of [CII] 157 μm Emission in a Five-component Interstellar Medium: The Case of NGC 3184 and NGC 628

    Get PDF
    With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C II] 157 μm emission. While the strength of the [C II] line correlates with the star formation rate, the contributions of the various gas phases to the [C II] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H II regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and G_0 surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628 on angular scales of 500–600 pc. Both galaxies are part of the Herschel key program KINGFISH, and are complemented by a large set of ancillary ground- and space-based data. The five modeled phases together reproduce the observed [C II] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C II] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H II regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C II] flux vary significantly between these regions

    The interstellar medium in Andromeda's dwarf spheroidal galaxies: II. Multi-phase gas content and ISM conditions

    Get PDF
    We make an inventory of the interstellar medium material in three low-metallicity dwarf spheroidal galaxies of the Local Group (NGC147, NGC185 and NGC205). Ancillary Hi, CO, \textit{Spitzer} IRS spectra, Hα\alpha and X-ray observations are combined to trace the atomic, cold and warm molecular, ionised and hot gas phases. We present new Nobeyama CO(1-0) observations and \textit{Herschel} SPIRE FTS [Ci] observations of NGC205 to revise its molecular gas content. We derive total gas masses of Mg = 1.9-5.5x105^5 M\odot for NGC185 and Mg = 8.6-25.0x10^5 M\odot for NGC205. Non-detections combine to an upper limit on the gas mass of Mg =< 0.3-2.2x10^5 M\odot for NGC147. The observed gas reservoirs are significantly lower compared to the expected gas masses based on a simple closed-box model that accounts for the gas mass returned by planetary nebulae and supernovae. The gas-to-dust mass ratios GDR~37-107 and GDR~48-139 are also considerably lower compared to the expected GDR~370 and GDR~520 for the low metal abundances in NGC 185 (0.36 Z\odot) and NGC205 (0.25 Z\odot), respectively. To simultaneously account for the gas deficiency and low gas-to-dust ratios, we require an efficient removal of a large gas fraction and a longer dust survival time (~1.6 Gyr). We believe that efficient galactic winds (combined with heating of gas to sufficiently high temperatures in order for it to escape from the galaxy) and/or environmental interactions with neighbouring galaxies are responsible for the gas removal from NGC147, NGC185 and NGC205.Science and Technology Facilities Council (STFC); Flemish Fund for Scientific Research (FWO-Vlaanderen); BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/ MCYT (Spain); CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); NASA (USA

    The ionized gas in nearby galaxies as traced by the [NII] 122 and 205 μm transitions

    Get PDF
    The [NII] 122 and 205 \mu m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ~1 kiloparsec, with observations of both [NII] far-infrared lines. We measure [NII] 122/205 line ratios in the ~0.6-6 range, which corresponds to electron gas densities nen_e~1-300 cm3^{-3}, with a median value of nen_e=30 cm3^{-3}. Variations in the electron density within individual galaxies can be as a high as a factor of ~50, frequently with strong radial gradients. We find that nen_e increases as a function of infrared color, dust-weighted mean starlight intensity, and star formation rate surface density (ΣSFR\Sigma_{SFR}). As the intensity of the [NII] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the star formation rate (SFR). We derive relations between the [NII] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [NII] surface brightness and ΣSFR\Sigma_{SFR} can be understood as a property of the nen_e distribution. For regions with nen_e close to or higher than the [NII] line critical densities, the low-density limit [NII]-based SFR calibration systematically underestimates the SFR since [NII] emission is collisionally quenched. Finally, we investigate the relation between [NII] emission, SFR, and nen_e by comparing our observations to predictions from the MAPPINGS-III code.Fulbright-CONICYT grantThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Institute of Physics

    The Spatially Resolved [CII] Cooling Line Deficit in Galaxies

    Get PDF
    We present [C II] 158 μ\mum measurements from over 15,000 resolved regions within 54 nearby galaxies of the KINGFISH program to investigate the so-called [C II] “line-cooling deficit” long known to occur in galaxies with different luminosities. The [C II]/TIR ratio ranges from above 1% to below 0.1% in the sample, with a mean value of 0.48 ± 0.21%. We find that the surface density of 24 μ\mum emission dominates this trend, with [C II]/TIR dropping as ν\nuIνI_\nu (24 μ\mum) increases. Deviations from this overall decline are correlated with changes in the gas-phase metal abundance, with higher metallicity associated with deeper deficits at a fixed surface brightness. We supplement the local sample with resolved [C II] measurements from nearby luminous infrared galaxies and high-redshift sources from zz = 1.8–6.4, and find that star formation rate density drives a continuous trend of deepening [C II] deficit across six orders of magnitude in SFR\sum_{SFR}. The tightness of this correlation suggests that an approximate SFR\sum_{SFR} can be estimated directly from global measurements of [C II]/TIR, and a relation is provided to do so. Several low-luminosity active galactic nucleus (AGN) hosts in the sample show additional and significant central suppression of [C II]/TIR, but these deficit enhancements occur not in those AGNs with the highest X-ray luminosities, but instead those with the highest central starlight intensities. Taken together, these results demonstrate that the [C II] line-cooling line deficit in galaxies likely arises from local physical phenomena in interstellar gas.This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We thank Steve Hailey-Dunsheath, T. Rawle, and Tanio Diaz-Santos for advanced access to their compiled [C II] data sets. J.D.S. gratefully acknowledges visiting support from the Alexander von Humboldt Foundation and the Max Planck Institute für Astronomie as well as support from the Research Corporation for Science Advancement through its Cottrell Scholars program

    The Radio Spectral Energy Distribution and Star Formation Rate Calibration in Galaxies

    Get PDF
    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1–10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1–10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index (SνS_{\nu} ~ ν\nuαnt^ {-\alpha_{nt}}) and the thermal fraction (fthf_{\text{th}}) with mean values of αnt\alpha_{nt} = 0.97 ± 0.16 (0.79 ± 0.15 for the total spectral index) and fthf_{\text{th}} = (10 ± 9)% at 1.4 GHz. The MRC luminosity changes over ~3 orders of magnitude in the sample, 4.3 ×\times 102^2 LL_\odot < MRC < 3.9 ×\times 105^5 LL_\odot. The thermal emission is responsible for ~23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.F.S.T. acknowledges support by the German Research Foundation DFG via the grant TA 801/1-1 and the Spanish Ministry of Economy and Competitiveness(MINECO) under grant number AYA2013-41243-P. R.B. acknowledges financial support from DFG Research Unit FOR1254. D.D.M acknowledges support from ERCStG 307215 (LODESTONE)

    Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    Get PDF
    The American Astronomical Society. All rights reserved..We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel\textit{Herschel}) and SINGS (Spitzer \textit{Spitzer } Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX\textit{GALEX}, SDSS, Pan-STARRS1, NOAO, 2MASS, \textit{NOAO, 2MASS, } Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT\textit{Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT}, and the VLA\textit{VLA}. Improvements of note include recalibrations of previously published SINGS BVR C_{C} I C_{C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper

    Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    Get PDF
    The American Astronomical Society. All rights reserved..We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel\textit{Herschel}) and SINGS (Spitzer \textit{Spitzer } Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX\textit{GALEX}, SDSS, Pan-STARRS1, NOAO, 2MASS, \textit{NOAO, 2MASS, } Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT\textit{Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT}, and the VLA\textit{VLA}. Improvements of note include recalibrations of previously published SINGS BVR C_{C} I C_{C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper

    Reionization Era Bright Emission Line Survey: Selection and Characterization of Luminous Interstellar Medium Reservoirs in the z > 6.5 Universe

    Get PDF
    The Reionization Era Bright Emission Line Survey (REBELS) is a cycle-7 ALMA Large Program (LP) that is identifying and performing a first characterization of many of the most luminous star-forming galaxies known in the z > 6.5 universe. REBELS is providing this probe by systematically scanning 40 of the brightest UV-selected galaxies identified over a 7 deg2 area for bright [C ii]158 μm and [O iii]88 μm lines and dust-continuum emission. Selection of the 40 REBELS targets was done by combining our own and other photometric selections, each of which is subject to extensive vetting using three completely independent sets of photometry and template-fitting codes. Building on the observational strategy deployed in two pilot programs, we are increasing the number of massive interstellar medium (ISM) reservoirs known at z > 6.5 by ∼4-5× to >30. In this manuscript, we motivate the observational strategy deployed in the REBELS program and present initial results. Based on the first-year observations, 18 highly significant ≥ 7σ [C ii]158 μm lines have already been discovered, the bulk of which (13/18) also show ≥3.3σ dust-continuum emission. These newly discovered lines more than triple the number of bright ISM-cooling lines known in the z > 6.5 universe, such that the number of ALMA-derived redshifts at z > 6.5 rival Lyα discoveries. An analysis of the completeness of our search results versus star formation rate (SFR) suggests an ∼79% efficiency in scanning for [C ii]158 μm when the SFRUV+IR is >28 M yr-1. These new LP results further demonstrate ALMA's efficiency as a "redshift machine,"particularly in the Epoch of Reionization

    Observations of Magnetic Fields Surrounding LkH alpha 101 Taken by the BISTRO Survey with JCMT-POL-2

    Get PDF
    We report the first high spatial resolution measurement of magnetic fields surrounding LkHα 101, part of the Auriga–California molecular cloud. The observations were taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope within the framework of the B-fields In Star-forming Region Observations (BISTRO) survey. Observed polarization of thermal dust emission at 850 μm is found to be mostly associated with the redshifted gas component of the cloud. The magnetic field displays a relatively complex morphology. Two variants of the Davis–Chandrasekhar–Fermi method, unsharp masking and structure function, are used to calculate the strength of magnetic fields in the plane of the sky, yielding a similar result of BPOS ~ 115 μG. The mass-to-magnetic-flux ratio in critical value units, λ ~ 0.3, is the smallest among the values obtained for other regions surveyed by POL-2. This implies that the LkHα 101 region is subcritical, and the magnetic field is strong enough to prevent gravitational collapse. The inferred δB/B0 ~ 0.3 implies that the large-scale component of the magnetic field dominates the turbulent one. The variation of the polarization fraction with total emission intensity can be fitted by a power law with an index of α = 0.82 ± 0.03, which lies in the range previously reported for molecular clouds. We find that the polarization fraction decreases rapidly with proximity to the only early B star (LkHα 101) in the region. Magnetic field tangling and the joint effect of grain alignment and rotational disruption by radiative torques can potentially explain such a decreasing trend

    Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry

    Get PDF
    We have obtained sensitive dust continuum polarization observations at 850 μm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38±14 μG, 44±16 μG, and 12±5 μG, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux
    corecore