11 research outputs found

    Cone-Rod Dystrophy Due to Mutations in a Novel Photoreceptor-Specific Homeobox Gene (CRX) Essential for Maintenance of the Photoreceptor

    Get PDF
    Genes associated with inherited retinal degeneration have been found to encode proteins required for phototransduction, metabolism, or structural support of photoreceptors. Here we show that mutations in a novel photoreceptor-specific homeodomain transcription factor gene (CRX) cause an autosomal dominant form of cone-rod dystrophy (adCRD) at the CORD2 locus on chromosome 19q13. In affected members of a CORD2-linked family, the highly conserved glutamic acid at the first position of the recognition helix is replaced by alanine (E80A). In another CRD family, a 1 bp deletion (E168 [delta1 bp]) within a novel sequence, the WSP motif, predicts truncation of the C-terminal 132 residues of CRX. Mutations in the CRX gene cause adCRD either by haploinsufficiency or by a dominant negative effect and demonstrate that CRX is essential for the maintenance of mammalian photoreceptorsThis work was supported by the RP Foundation of Canada (R. R. M.), the Foundation Fighting Blindness (R. R. M. and S. G. J.), the Canadian Genetic Disease Network (R. R. M. and A. D.), the Medical Research Council of Canada (R. R. M.), The Wellcome Trust (043825/Z/95) and the Human Genome Mapping Resource Centre (C. Y. G.-E. and S. S. B.), the Howard Hughes Medical Institute and NIH R01 EY0 8064 (C. L. C.), the Canadian Genome Analysis and Technology Genome Resource Facility (S. W. S. and L.-C. T.), the NIH/NEI (EY05627) (S. G. J.), and the Greek National Scholarship Foundation (M. P.). R. R. M. and L.-C. T. are International Research Scholars of the Howard Hughes Medical Institute

    Functional analysis of Euglena gracilis photoactivated adenylyl cyclase (PAC)

    No full text
    Die Photoaktivierte Adenylatzyklase PAC ist in E. gracilis an der Phototaxis beteiligt und besteht aus den zwei unterschiedlich großen Proteinen PACalpha und PACbeta. Beide besitzen jeweils zwei FAD bindende (BLUF) Domänen F1 und F2 sowie zwei Zyklasedomänen C1 und C2. An den Zyklasedomänen findet die Umsetzung von ATP in cAMP statt und die BLUF-Domänen werden für die Lichtaktivierung benötigt. Für diese Arbeit wurde PAC und Mutanten davon heterolog in Oocyten von Xenopus laevis exprimiert. PAC besitzt bereits im Dunkeln Adenylatzyklaseaktivität, die durch Belichtung erhöht werden kann. Die Zunahme der Aktivität erfolgt mit einer Zeitkonstante von unter 100 ms, die Abnahme nach der Belichtung hat eine Zeitkonstante im Bereich von 10ms. Das für die katalytische Umsetzung in allen Klasse III Nukleotidzyklasen benötigte Dimer zweier Zyklasedomänen ist in PAC das Dimer aus C1 und C2. Durch Messungen mit PAC-Mutanten, bei denen jeweils eine Zyklasedomäne defekt war, konnte gezeigt werden, dass diese Dimerisierung in PACalpha intermolekular auftritt. Ebenso wurde gezeigt, dass ein solches Dimer aus Zyklasedomänen von PACalpha und PACbeta bestehen kann. Der Austausch der Zyklasedomänen von PACalpha durch Zyklasedomänen der Guanylatzyklasen GCY35 und GCY36 aus C. elegans führte zu einem Verlust der Zyklaseaktivität. Die Proteine wurden aber zumindest teilweise korrekt gefaltet, was durch Dimerbildung mit Knockoutmutanten von PAC in Koexpressionsexperimenten gezeigt werden konnte. Die Fusionsproteine aus PACalpha und den CNG-Kanälen CNGA2 und OLF führten in Oocyten zu einer deutlich geringeren Leitwertänderung als eine Expression der Einzelproteine. Sowohl bei einer N-terminalen Fusion des Kanals an PAC als auch bei der C-terminalen Fusion war es jeweils der Kanal, der im Fusionsprotein stark gehemmt war. Eine Deletion des C-Terminus von PACalpha führte zu einem nicht funktionsfähigen Protein, das auch in Koexpression mit PAC-Knockoutmutanten keine messbare Adenylatzyklaseaktivität zeigte. Wurde die F2-Domäne deletiert, so verlor PAC ebenfalls seine Zyklaseaktivität vollständig. Die C1-Domäne war aber korrekt gefaltet, was durch eine Koexpression mit PAC-Mutanten gezeigt werden konnte, die in einer ihrer Zyklasedomänen defekt waren. Beide Chimären aus PACalpha und PACbeta besaßen Adenylatzyklaseaktivität. Diese war bei der Chimäre mit dem C-terminalen Teil von PACalpha deutlich höher als bei der Chimäre mit dem C-terminalen Teil von PACbeta, was darauf hindeutet, dass im C-terminalen Teil von PAC der Grund für den Aktivitätsunterschied zwischen PACalpha und PACbeta liegt. Für die Veränderung der Substratspezifität von einer Adenylat- zu einer Guanylatzyklase waren Mutationen an mindestens drei Aminosäuren erforderlich. Die ebenfalls hergestellten Einzel- und Doppelmutanten verhielten sich wie der Wildtyp oder hatten eine deutlich eingeschränkte Adenylatzyklaseaktivität. Bei der Tripelmutante PACalpha K250E T319G S329Y war Guanylatzyklaseaktivität nachweisbar, die aber geringer war als die noch vorhandene Adenylatzyklaseaktivität. Die Quadrupelmutante PACalpha K250E D317K T319G S329Y zeigte ebenfalls lichtinduzierbare Adenylatzyklaseaktivität, die ca. 0,3% der Aktivität der Wildtyp-PACalpha entsprach. Die Guanylatzyklaseaktivität dieser Mutante war ca. dreifach höher als deren Adenylatzyklaseaktivität. Somit konnte gezeigt werden, dass sich durch die Mutation weniger einzelner Aminosäuren die Substratspezifität von PAC von ATP nach GTP verschieben lässt.The photoactivated adenylyl cyclase PAC is involved in phototaxis in E. gracilis. It consists of two subunits of different size which are called PACalpha and PACbeta. Both of them harbour two FAD-binding domains (F1, F2) and two cyclase domains (C1, C2). PAC and mutants of PAC have been heterologously expressed in Oocytes of Xenopus laevis. Already in darkness PAC shows a basal level of adenylyl cyclase activity, which can be increased by illumination. The increase in cyclase activity occurs with a time constant lower than 100 ms, whereas the decrease after illumination has a time constant around 10 ms. The dimer of two cyclase domains, which is necessary for catalytic conversion in all class III cyclases, is formed of C1 and C2 in PAC. In electrophysiological experiments with PAC mutants which were defective in either of the cyclase domains it has been shown, that this dimer in PACalpha occurs intermolecularly. Furthermore it has been shown, that this dimer can occur between PACalpha and PACbeta. Mutants of PACalpha where the cyclase domains have been substituted by the cyclase domains of the guanylyl cyclases GCY35 and GCY36 from C. elegans lost their ability to produce cAMP. However coexpression experiments with PAC knockout mutants indicated correct translation of the substitution mutants. Expression of fusion proteins of PACalpha with the CNG channels CNGA2 and OLF showed less light-inducable conductance changes than the expression of the single protein. In both the N-terminal and C-terminal fusion of the channel to PACalpha it was the channel which was the most affected part of the fusion protein. Deletion of the C-terminus of PACalpha results in a non-functional protein, which in coexpression with PACalpha knockout mutants shows no measurable cyclase activity. When deleting the F2-domain, PACalpha also loses its cyclase activity completely. However, the C1-domain was transcribed correctly, which could be shown by coexpression with a C1-knockout mutant. Both PACalpha-PACbeta chimeras showed adenylyl cyclase activity. Whereas the activity in the chimera with the C-terminal part of PACbeta showed little cyclase activity, the chimera possessing the C-terminal part of PACalpha showed adenylyl cyclase acitvity, which was comparable to the wildtype of PACalpha. This indicates that the part of PAC which is responsible for the difference in cyclase activity between PACalpha and PACbeta must be present in the C-terminal half of PAC. For altering PAC’s substrate specificity it was necessary to mutate at least three amino acids. The single and double mutants of PACalpha which were generated resulted in wildtypelike behaviour or reduced adenylyl cyclase activity. The triple mutant PACalpha K250E T319G S329Y showed guanylyl cyclase activity which was lower than its remaining adenylyl cyclase activity. The quadruple mutant PACalpha K250E D317K T319G S329Y also showed adenylyl cyclase activity, which was about 0.3% of the activity in PACalpha wildtype. The guanylyl cyclase activity of this mutant was about threefold higher than its adenylyl cyclase activity. Thus, it could be shown, that by mutating few single amino acids the substrate specificity of PACalpha was shifted from ATP to GTP

    Identification of two novel CVC domain-containing homeobox genes

    No full text
    grantor: University of TorontoThe retinal 'CHX10' gene encodes a protein with both a homeodomain of the paired-like type and a novel evolutionarily conserved protein domain of unknown function, the CVC domain. In this thesis, I report the isolation of 'CHX10-1', a human gene related to 'CHX10'. The 'CHX10-1' cDNA was isolated from a screen for ' CHX10' homologues expressed in adult human retina. 'CHX10-1 ' is expressed at low levels in the inner nuclear and ganglion cell layers of the adult retina. 'Chx171', a murine 'CHX10-1 ' homologue, differs from 'CHX10-1' in sequence and abundance. Genomic Southern analysis showed that although 'Chx171' is the closest mouse homologue of 'CHX10-1', a more closely related human gene may exist. This work demonstrates that multiple CVC domain-containing homeobox genes are expressed in the mammalian retina. Like 'CHX10', they are likely to contribute to retinal development and maintenance.M.Sc

    Fingerprinting Kinetic Isotope Effects and Diagenetic Exchange Reactions Using Fluid Inclusion and Dual-Clumped Isotope Analysis

    No full text
    Geochemical analyses of carbonate minerals yield multiple parameters which can be used to estimate the temperature and water composition at which they formed. Analysis of fluid trapped in minerals is a potentially powerful tool to reconstruct paleotemperatures as well as diagenetic and hydrothermal processes, as these could represent the parent fluid. Internal fluids play important roles during the alteration of carbonate fossils, lowering energetic barriers associated with resetting of clumped isotopes, as well as mediating the transport of elements during diagenesis. Here, we explore the behavior of the ∆47–∆48 “dual-clumped” isotope thermometer during fluid-carbonate interaction and demonstrate that it is highly sensitive to the water/carbonate ratio, behaving as a linear system in “rock buffered” alteration, and as a decoupled system in water-dominated systems due to non-linear mixing effects in ∆48. Dry heating experiments show that the extrapolated “heated” end-member is indistinguishable from the predicted ∆47 and ∆48 value expected for the experimental temperature. Furthermore, we evaluate two common laboratory sampling methods for their ability to thermally alter samples. We find that the temperature of the commonly used crushing cells used to vapourize water for fluid inclusion δ18O analyses is insufficient to cause fluid-carbonate oxygen isotope exchange, demonstrating its suitability for analyses of fluid inclusions in carbonates. We also find that belemnites sampled with a hand-drill yield significantly warmer paleotemperatures than those sampled with mortar and pestle. We conclude that thermally-driven internal fluid-carbonate exchange occurs indistinguishably from isotopic equilibrium, limited by the extent to which internal water and carbonate can react.ISSN:1525-202

    Fast manipulation of cellular cAMP level by light in vivo

    No full text
    The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACα and PACβ. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells

    Fast manipulation of cellular cAMP level by light in vivo

    Get PDF
    The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACa and PACb. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.Peer Reviewe

    Fast manipulation of cellular cAMP level by light in vivo

    Get PDF
    The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells
    corecore