231 research outputs found

    Bananas as an Energy Source during Exercise: A Metabolomics Approach

    Get PDF
    This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N = 14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F2-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P = 0.258). F2-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P = 0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum) = 0.869, Q2(cum) = 0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways

    Inducible expression of Pisum sativum xyloglucan fucosyltransferase in the pea root cap meristem, and effects of antisense mRNA expression on root cap cell wall structural integrity

    Get PDF
    Mitosis and cell wall synthesis in the legume root cap meristem can be induced and synchronized by the nondestructive removal of border cells from the cap periphery. Newly synthesized cells can be examined microscopically as they differentiate progressively during cap development, and ultimately detach as a new population of border cells. This system was used to demonstrate that Pisum sativum L. fucosyl transferase (PsFut1) mRNA expression is strongly expressed in root meristematic tissues, and is induced >2-fold during a 5-h period when mitosis in the root cap meristem is increased. Expression of PsFut1 antisense mRNA in pea hairy roots under the control of the CaMV35S promoter, which exhibits meristem localized expression in pea root caps, resulted in a 50–60% reduction in meristem localized endogenous PsFut1 mRNA expression measured using whole mount in situ hybridization. Changes in gross levels of cell wall fucosylated xyloglucan were not detected, but altered surface localization patterns were detected using whole mount immunolocalization with CCRC-M1, an antibody that recognizes fucosylated xyloglucan. Emerging hairy roots expressing antisense PsFut1 mRNA appeared normal macroscopically but scanning electron microscopy of tissues with altered CCRC-M1 localization patterns revealed wrinkled, collapsed cell surfaces. As individual border cells separated from the cap periphery, cell death occurred in correlation with extrusion of cellular contents through breaks in the wall

    Can a Multifaceted Intervention Including Motivational Interviewing Improve Medication Adherence, Quality of Life, and Mortality Rates in Older Patients Undergoing Coronary Artery Bypass Surgery? A Multicenter, Randomized Controlled Trial with 18-Month Follow-Up.

    Get PDF
    BACKGROUND: Patients undergoing coronary artery bypass graft (CABG) surgery are required to take a complex regimen of medications for extended periods, and they may have negative outcomes because they struggle to adhere to this regimen. Designing effective interventions to promote medication adherence in this patient group is therefore important. OBJECTIVE: The present study aimed to evaluate the long-term effects of a multifaceted intervention (psycho-education, motivational interviewing, and short message services) on medication adherence, quality of life (QoL), and mortality rates in older patients undergoing CABG surgery. METHODS: Patients aged over 65 years from 12 centers were assigned to the intervention (EXP; n = 144) or treatment-as-usual (TAU; n = 144) groups using cluster randomization at center level. Medication adherence was evaluated using the Medication Adherence Rating Scale (MARS), pharmacy refill rate, and lipid profile; QoL was evaluated using Short Form-36. Data were collected at baseline; 3, 6, and 18 months after intervention. Survival status was followed up at 18 months. Multi-level regressions and survival analyses for hazard ratio (HR) were used for analyses. RESULTS: Compared with patients who received TAU, the MARS, pharmacy refill rate, and lipid profile of patients in the EXP group improved 6 months after surgery (p < 0.01) and remained so 18 months after surgery (p < 0.01). QoL also increased among patients in the EXP group as compared with those who received TAU at 18 months post-surgery (physical component summary score p = 0.02; mental component summary score p = 0.04). HR in the EXP group compared with the TAU group was 0.38 (p = 0.04). CONCLUSION: The findings suggest that a multifaceted intervention can improve medication adherence in older patients undergoing CABG surgery, with these improvements being maintained after 18 months. QoL and survival rates increased as a function of better medication adherence. ClinicalTrials.gov NCT02109523

    The effect of a comprehensive lifestyle intervention on cardiovascular risk factors in pharmacologically treated patients with stable cardiovascular disease compared to usual care: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The additional benefit of lifestyle interventions in patients receiving cardioprotective drug treatment to improve cardiovascular risk profile is not fully established.</p> <p>The objective was to evaluate the effectiveness of a target-driven multidisciplinary structured lifestyle intervention programme of 6 months duration aimed at maximum reduction of cardiovascular risk factors in patients with cardiovascular disease (CVD) compared with usual care.</p> <p>Methods</p> <p>A single centre, two arm, parallel group randomised controlled trial was performed. Patients with stable established CVD and at least one lifestyle-related risk factor were recruited from the vascular and cardiology outpatient departments of the university hospital. Blocked randomisation was used to allocate patients to the intervention (n = 71) or control group (n = 75) using an on-site computer system combined with allocations in computer-generated tables of random numbers kept in a locked computer file. The intervention group received the comprehensive lifestyle intervention offered in a specialised outpatient clinic in addition to usual care. The control group continued to receive usual care. Outcome measures were the lifestyle-related cardiovascular risk factors: smoking, physical activity, physical fitness, diet, blood pressure, plasma total/HDL/LDL cholesterol concentrations, BMI, waist circumference, and changes in medication.</p> <p>Results</p> <p>The intervention led to increased physical activity/fitness levels and an improved cardiovascular risk factor profile (reduced BMI and waist circumference). In this setting, cardiovascular risk management for blood pressure and lipid levels by prophylactic treatment for CVD in usual care was already close to optimal as reflected in baseline levels. There was no significant improvement in any other risk factor.</p> <p>Conclusions</p> <p>Even in CVD patients receiving good clinical care and using cardioprotective drug treatment, a comprehensive lifestyle intervention had a beneficial effect on some cardiovascular risk factors. In the present era of cardiovascular therapy and with the increasing numbers of overweight and physically inactive patients, this study confirms the importance of risk factor control through lifestyle modification as a supplement to more intensified drug treatment in patients with CVD.</p> <p>Trial registration</p> <p>ISRCTN69776211 at <url>http://www.controlled-trials.com</url></p

    Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial.

    Get PDF
    An in vitro study was undertaken to evaluate the compatibility of indigenous plant growth promoting rhizobacteria (PGPR) with commonly used inorganic and organic sources of fertilizers in tea plantations. The nitrogenous, phosphatic and potash fertilizers used for this study were urea, rock phosphate and muriate of potash, respectively. The organic sources of fertilizers neem cake, composted coir pith and vermicompost were also used. PGPRs such as nitrogen fixer; Azospirillum lipoferum, Phosphate Solubilizing Bacteria (PSB); Pseudomonas putida, Potassium Solubilizing Bacteria (KSB); Burkholderia cepacia and Pseudomonas putida were used for compatibility study. Results were indicated that PGPRs preferred the coir pith and they proved their higher colony establishment in the formulation except Azospirillum spp. that preferred vermicompost for their establishment. The optimum dose of neem cake powder

    Identification of an OsPR10a promoter region responsive to salicylic acid

    Get PDF
    Orysa sativa pathogenesis-related protein 10a (OsPR10a) was induced by pathogens, salicylic acid (SA), jasmonic acid (JA), ethephon, abscisic acid (ABA), and NaCl. We tried to analyze the OsPR10a promoter to investigate the transcriptional regulation of OsPR10a by SA. We demonstrated the inducibility of OsPR10a promoter by SA using transgenic Arabidopsis carrying OsPR10a:GFP as well as by transient expression assays in rice. To further identify the promoter region responsible for its induction by SA, four different deletions of the OsPR10a promoter were made, and their activities were measured by transient assays. The construct containing 687-bp OsPR10a promoter from its start codon exhibited a six-fold increase of induction compared to the control in response to SA. Mutation in the W-box like element 1 (WLE 1) between 687 and 637-bp from TGACA to TGAAA completely abolished induction of the OsPR10a promoter by SA, indicating that the WLE 1 between −687 and −637 of OsPR10a promoter is important in SA-mediated OsPR10a expression. We show for the first time that the W-box like element plays a role in SA mediated PR gene expression

    Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis

    Get PDF
    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses

    Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases

    Get PDF
    Grapevine is one of the most important economic crops yielding berries, wine products as well as derivates. However, due to the large array of pathogens inducing diseases on this plant, considerable amounts of pesticides—with possible negative impact on the environment and health—have been used and are currently used in viticulture. To avoid negative impacts of such products and to ensure product quality, a substantial fraction of pesticides needs to be replaced in the near future. One solution can be related to the use of beneficial bacteria inhabiting the rhizo- and/or the endosphere of plants. These biocontrol bacteria and their secondary metabolites can reduce directly or indirectly pathogen diseases by affecting pathogen performance by antibiosis, competition for niches and nutrients, interference with pathogen signaling or by stimulation of host plant defenses. Due to the large demand for biocontrol of grapevine diseases, such biopesticides, their modes of actions and putative consequences of their uses need to be described. Moreover, the current knowledge on new strains from the rhizo- and endosphere and their metabolites that can be used on grapevine plants to counteract pathogen attack needs to be discussed. This is in particular with regard to the control of root rot, grey mould, trunk diseases, powdery and downy mildews, pierce’s disease, grapevine yellows as well as crown gall. Future prospects on specific beneficial microbes and their secondary metabolites that can be used as elicitors of plant defenses and/or as biocontrol agents with potential use in a more sustainable viticulture will be further discussed

    Susceptibility and Response of Human Blood Monocyte Subsets to Primary Dengue Virus Infection

    Get PDF
    Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16− and CD16+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16− and CD16+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC), and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease
    corecore