71 research outputs found

    Large scale patterns in vertical distribution and behavior of mesopelagic scattering layers

    Get PDF
    Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.En prensa2,927

    Ecosystem Overfishing in the Ocean

    Get PDF
    Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing–i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels

    Planktonic Microbes in the Gulf of Maine Area

    Get PDF
    In the Gulf of Maine area (GoMA), as elsewhere in the ocean, the organisms of greatest numerical abundance are microbes. Viruses in GoMA are largely cyanophages and bacteriophages, including podoviruses which lack tails. There is also evidence of Mimivirus and Chlorovirus in the metagenome. Bacteria in GoMA comprise the dominant SAR11 phylotype cluster, and other abundant phylotypes such as SAR86-like cluster, SAR116-like cluster, Roseobacter, Rhodospirillaceae, Acidomicrobidae, Flavobacteriales, Cytophaga, and unclassified Alphaproteobacteria and Gammaproteobacteria clusters. Bacterial epibionts of the dinoflagellate Alexandrium fundyense include Rhodobacteraceae, Flavobacteriaceae, Cytophaga spp., Sulfitobacter spp., Sphingomonas spp., and unclassified Bacteroidetes. Phototrophic prokaryotes in GoMA include cyanobacteria that contain chlorophyll (mainly Synechococcus), aerobic anoxygenic phototrophs that contain bacteriochlorophyll, and bacteria that contain proteorhodopsin. Eukaryotic microalgae in GoMA include Bacillariophyceae, Dinophyceae, Prymnesiophyceae, Prasinophyceae, Trebouxiophyceae, Cryptophyceae, Dictyochophyceae, Chrysophyceae, Eustigmatophyceae, Pelagophyceae, Synurophyceae, and Xanthophyceae. There are no records of Bolidophyceae, Aurearenophyceae, Raphidophyceae, and Synchromophyceae in GoMA. In total, there are records for 665 names and 229 genera of microalgae. Heterotrophic eukaryotic protists in GoMA include Dinophyceae, Alveolata, Apicomplexa, amoeboid organisms, Labrynthulida, and heterotrophic marine stramenopiles (MAST). Ciliates include Strombidium, Lohmaniella, Tontonia, Strobilidium, Strombidinopsis and the mixotrophs Laboea strobila and Myrionecta rubrum (ex Mesodinium rubra). An inventory of selected microbial groups in each of 14 physiographic regions in GoMA is made by combining information on the depth-dependent variation of cell density and the depth-dependent variation of water volume. Across the entire GoMA, an estimate for the minimum abundance of cell-based microbes is 1.7×1025 organisms. By one account, this number of microbes implies a richness of 105 to 106 taxa in the entire water volume of GoMA. Morphological diversity in microplankton is well-described but the true extent of taxonomic diversity, especially in the femtoplankton, picoplankton and nanoplankton – whether autotrophic, heterotrophic, or mixotrophic, is unknown

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species

    Full text link
    corecore