532 research outputs found

    A Bayesian space-time model for discrete spread processes on a lattice

    Get PDF
    Funding for this work was provided by GEOIDE through the Government of Canada’s Networks for Centres of Excellence program.In this article we present a Bayesian Markov model for investigating environmental spread processes. We formulate a model where the spread of a disease over a heterogeneous landscape through time is represented as a probabilistic function of two processes: local diffusion and random-jump dispersal. This formulation represents two mechanisms of spread which result in highly peaked and long-tailed distributions of dispersal distances (i.e., local and long-distance spread), commonly observed in the spread of infectious diseases and biological invasions. We demonstrate the properties of this model using a simulation experiment and an empirical case study - the spread of mountain pine beetle in western Canada. Posterior predictive checking was used to validate the number of newly inhabited regions in each time period. The model performed well in the simulation study in which a goodness-of-fit statistic measuring the number of newly inhabited regions in each time interval fell within the 95% posterior predictive credible interval in over 97% of simulations. The case study of a mountain pine beetle infestation in western Canada (1999-2009) extended the base model in two ways. First, spatial covariates thought to impact the local diffusion parameters, elevation and forest cover, were included in the model. Second, a refined definition for translocation or jump-dispersal based on mountain pine beetle ecology was incorporated improving the fit of the model. Posterior predictive checks on the mountain pine beetle model found that the observed goodness-of-fit test statistic fell within the 95% posterior predictive credible interval for 8 out of 10. years. The simulation study and case study provide evidence that the model presented here is both robust and flexible; and is therefore appropriate for a wide range of spread processes in epidemiology and ecology.PostprintPeer reviewe

    Cosmological Effects of Radion Oscillations

    Full text link
    We show that the redshift of pressureless matter density due to the expansion of the universe generically induces small oscillations in the stabilized radius of extra dimensions (the radion field). The frequency of these oscillations is proportional to the mass of the radion and can have interesting cosmological consequences. For very low radion masses mbm_b (mb10100H01032eVm_b\sim10-100 H_0\simeq10^{-32} eV) these low frequency oscillations lead to oscillations in the expansion rate of the universe. The occurrence of acceleration periods could naturally lead to a resolution of the coincidence problem, without need of dark energy. Even though this scenario for low radion mass is consistent with several observational tests it has difficulty to meet fifth force constraints. If viewed as an effective Brans-Dicke theory it predicts ω=1+1D\omega=-1+\frac{1}{D} (DD is the number of extra dimensions), while experiments on scales larger than 1mm1mm imply ω>2500\omega>2500. By deriving the generalized Newtonian potential corresponding to a massive toroidally compact radion we demonstrate that Newtonian gravity is modified only on scales smaller than mb1m_b^{-1}. Thus, these constraints do not apply for mb>103eVm_b>10^{-3} eV (high frequency oscillations) corresponding to scales less than the current experiments (0.3mm0.3mm). Even though these high frequency oscillations can not resolve the coincidence problem they provide a natural mechanism for dark matter generation. This type of dark matter has many similarities with the axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and some additional references include

    A CRISPR-Cas9-engineered mouse model for GPI anchor deficiency mirrors human phenotype and shows hippocampal synaptic dysfunctions

    Get PDF
    Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency. Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol anchor pathway show cognitive impairments, a motor delay and in many cases epilepsy. Thus far, the pathophysiology underlying the disease remains unclear and suitable rodent models that mirror human pathophysiology have not been available. We therefore generated a mouse model using CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, at a site that is also conserved in mice, Pigv:c.1022C>A (p.A341E). Reflecting the human pathology mutant Pigv(341E) mice showed deficits in motor coordination and cognitive impairment with poorer long-term spatial memory than wild-type mice, as well as alterations in sociability and sleep patterns. Furthermore, immunohistochemistry showed decreased synaptophysin-immunoreactivity and electrophysiology recordings demonstrated reduced hippocampal synaptic transmission in Pigv(341E) mice that may underlie impaired memory formation. To gain a deeper and broader molecular understanding of the consequences of glycosylphosphatidylinositol anchor deficiency, we performed single-cell RNA sequencing on acutely isolated hippocampal cells of Pigv(341E) and wild-type mice. We found that hippocampal cells from adult Pigv(341E) mice exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction of Abl1 transcripts in several cell clusters suggests a link to the signaling pathway of glycosylphosphatidylinositol-anchored ephrins. We also observed increased levels of Hdc that might affect histamine metabolism with consequences in circadian rhythm. In summary, we present here the first mouse model with a patient-specific hypomorphic mutation that mirrors the human phenotype and shows a hippocampal synaptic defect. This new mouse model will not only open the doors for further investigation into the pathophysiology of glycosylphosphatidylinositol biosynthesis deficiency in future studies, but will also deepen our understanding in the role of glycosylphosphatidylinositol-anchor related pathways in brain development

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal

    A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays

    Get PDF
    The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European Physical Journal

    WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV

    Get PDF
    From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
    corecore