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Abstract 1 

In this article we present a Bayesian Markov model for investigating environmental spread 2 

processes. We formulate a model where the spread of a disease over a heterogeneous landscape 3 

through time is represented as a probabilistic function of two processes: local diffusion and 4 

random-jump dispersal which allows the model to represent the leptokurtic spread pattern typical 5 

of many infectious diseases and biological invasions. We demonstrate the properties of this 6 

model using a simulation experiment and an empirical case study – the spread of mountain pine 7 

beetle in western Canada. Posterior predictive checking was used to validate the number of 8 

newly inhabited regions in each time period. Map comparison analysis was used to measure 9 

spatial agreement of spatially distributed model parameter estimates and observed values. The 10 

model performed well in the simulation study in which a goodness-of-fit statistic measuring the 11 

number of newly inhabited regions in each time interval fell within the 95% posterior predictive 12 

credible interval in over 97% of simulations. The map comparison analysis revealed that in some 13 

cases the magnitude of estimated parameter values differed markedly from the true values, but in 14 

all cases an adequate recovery of the spatial structure was obtained, indicating good spatial 15 

agreement. The case study of a mountain pine beetle infestation in Western Canada (1999 to 16 

2009) extended the base model in two ways. First, spatial covariates thought to impact the local 17 

diffusion parameters, elevation and forest cover, were included in the model. Second, a refined 18 

definition for translocation or jump-dispersal based on mountain pine beetle ecology was 19 

incorporated improving the fit of the model. Posterior predictive checks on the mountain pine 20 

beetle model found that the observed goodness-of-fit test statistic fell within the 95% posterior 21 

predictive credible interval for 8 out of 10 years. The simulation study and case study provide 22 

evidence that the model presented here is both robust and flexible; and is therefore  appropriate 23 

for a wide array of spread processes in epidemiology and ecology.  24 

 25 

HIGHLIGHTS 26 
 Develop and implement a hierarchical Bayes Markov model for spread processes.  27 

 Case study describing the spread of mountain pine beetle in Western Canada, 1999-2009. 28 

 Model assessment uses posterior predictive simulation and map comparison statistics. 29 

 East of Rocky Mountains spread is dominated by translocation events. 30 

 Model is flexible at handling complex spread processes across heterogeneous landscapes. 31 

 32 

KEYWORDS: space-time binary data, spread process, spatial random effects, mountain pine 33 

beetle, map comparison 34 

 35 

36 
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1. Introduction  37 

Understanding the emergence and spread of infectious diseases is of increasing concern 38 

for promoting global health (Jones et al., 2008).  While the reasons for changes in disease 39 

patterns over time and space are complex and multidimensional (Morse, 1995), there is a 40 

growing need for models  capable of describing variation in the spread pattern once cases are 41 

being reported (Riley, 2007). Further, understanding underlying risk factors associated with 42 

disease amplification is needed to establish appropriate control measures. For example, animal 43 

movement and network structure often have an important role in how zoonotic disease epidemics 44 

or epizootics develop and spread (Kiss et al., 2006). Similarly in ecology, the spread of non-45 

native species are routinely linked to anthropogenic vectors (e.g., Coetzee et al., 2009) or climate 46 

change (e.g., Cudmore et al., 2010). As a result, the study of spread processes, defined here as 47 

the ability of an organism or disease to expand its current range, is receiving considerable 48 

attention in both the epidemiological and ecological literature, and increasingly detailed spatial-49 

temporal datasets are providing new opportunities to study the dynamics of spread (see for 50 

example, Hooten et al., 2010). Given the increased rate at which many organisms are spreading 51 

(Ricciardi, 2007), continued development of methods and tools capable of modeling complex 52 

spread processes are warranted. 53 

Due to the nature of disease surveillance systems which are the primary data sources for 54 

disease modeling studies, data are often only available at discrete temporal intervals (e.g., 55 

weeks). Similarly, many pathogens spread via fomites at discrete time periods. For example, 56 

marine invasive species such as the zebra mussel (Dreissena polymorpha) spread primarily due 57 

to recreational boating, which peaks during the summer months (Schneider et al., 1998). Other 58 

species disperse naturally at discrete temporal intervals. For instance, bark beetles emerge and 59 
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disperse on an annual basis (Safranyik & Carroll, 2006). As a result, there is considerable interest 60 

in developing discrete-time representations of spread in ecological models.  61 

Spatially, data can be represented as either an aggregated spatial unit (i.e., discrete) or as 62 

point-events (i.e., continuous). For most ecological models, aggregated data are used simply due 63 

to ease of field sampling. Units are analogous to quadrats in which the presence / absence or 64 

abundance of the species is measured. While continuous spatial data provide a high level of 65 

spatial detail, this is typically purchased at the expense of the spatial extent of the study. For 66 

ecological models at the landscape scale, point-event data are often not feasible. For both 67 

discrete and continuous spatial data, representation of landscape heterogeneity is often a major 68 

limitation in models of spread (Pitt et al., 2009). For example, physical barriers such as 69 

mountains and rivers are often poorly represented using traditional geographic data formats 70 

(Cova and Goodchild, 2002). This issue is exacerbated by the fact that processes at multiple 71 

spatial scales act in concert to produce spread patterns on the landscape, yet modeling is often 72 

carried out at a single spatial scale (Pitt et al., 2009). Pearson and Dawson (2003) have proposed 73 

hierarchical modeling as a potential solution which can incorporate ecological mechanisms at 74 

multiple spatial scales.  75 

The spread of disease is often the result of multiple mechanisms. For example, foot and 76 

mouth disease typically spreads among animals and herds via airborne transmission, and among 77 

farms and regions by animal movement networks and fomites (Green et al., 2006).  Similarly, in 78 

many ecological invasions, the resultant pattern of invasion is often multi-causal: locally through 79 

diffusion or movement and over greater distances via intermediate species or translocation 80 

vectors. Smith et al. (2002) provide a mathematical model for spread processes characterized by 81 

both local and random-jump dispersing mechanisms, using the spread of raccoon rabies across a 82 
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lattice in their example. However, inference in Smith et al. (2002) was based on a stochastic 83 

estimation algorithm rather than a formal statistical  framework for inference. The spread of 84 

raccoon rabies was also examined by Wheeler and Waller (2008) who link spatial variation in 85 

patterns of spread (i.e., deviations from a travelling wave) to landscape heterogeneity using 86 

spatially-varying regression, and adopt a Bayesian framework for inference.  87 

  Bayesian space-time spread models have previously been formulated for investigating 88 

environmental spread processes with point-referenced count data, (e.g., Wikle, 2003; Hooten and 89 

Wikle, 2006). As well, Gibson et al. (2006) have developed a Bayesian space-time percolation 90 

model for contact-based (local) spread across a spatial lattice; however, the model developed 91 

there does not accommodate translocation events, where the disease process spreads across 92 

disconnected regions. This is particularly important considering that the broad scale outcomes of 93 

spread by many ecological organisms are dominated by random-jump translocation events, and 94 

not local diffusion (e.g., Suarez et al., 2001). 95 

Despite the inherent link between the spread of species of interest to ecologists, and 96 

disease spread in human populations studied by epidemiologists, models have been developed 97 

largely independently in these fields until very recently (Smith et al., 2002). Given that the 98 

majority of emerging diseases are zoonotic in nature (Jones et al., 2008), and often of wildlife 99 

origin, there exists a need for integrated ecological-epidemiological modeling. In this article we 100 

present a hierarchical Bayes approach appropriate for modeling either disease or organism spread 101 

across a landscape, and allow for landscape heterogeneity using spatially-varying parameters. 102 

Although we investigate a specific ecological application (i.e., mountain pine beetle in western 103 

Canada), the methods employed are generic and appropriate for a wide range of spread problems 104 

in ecology and epidemiology.. 105 
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 In this article, we present a discrete-time Markov model for ecological spread processes 106 

allowing for spatially-varying spread rates and random-jump dispersal. In the next section we 107 

present the model. A simulation study follows, which evaluates model performance. Simulated 108 

datasets at multiple spatial scales, under various spread scenarios, are used to illustrate model 109 

strengths and weaknesses. Next, we report on an empirical case study investigating the spread of 110 

mountain pine beetle (Dendroctonus ponderosae) in western Canada. Finally, we discuss 111 

remaining challenges and practical issues related to the process of model development and 112 

conclude by linking this research with potential applications in epidemiology.  113 

2. Model Development 114 

Given n regions comprising a study area, we formulated a logistic model for a binary 115 

spread process (defined here as inhabited-uninhabited) where it was assumed that newly 116 

inhabited regions do not revert to being uninhabited (Mollison, 1977), and we 117 

let }1,0{)( tZ
i

indicate the presence of an organism or disease in region i, i=1,…, n,  at time t, 118 

t=1,…,T. Here, t = 1 corresponds to the initial map of organism or disease presence, and the 119 

vector Z(t) = (Z1(t), …, Zn(t))' represents a binary map describing the progression of the 120 

organism or disease at time t. Spread is described through a stochastic process model for Z(t), 121 

which conditional on model parameters Θ, is assumed to follow a first-order Markov 122 

assumption, so that   123 

Pr{Z(t)|Z(t-1),Z(t-2),…,Z(1),Θ} = Pr{Z(t)|Z(t-1),Θ} where the Markov transition kernel is 124 

indexed by Θ. The Markov model is further simplified by assuming conditional independence 125 

across regions, so that  126 

Pr{Z(t)|Z(t-1),Θ} = Πi Pr{Zi(t)|Z(t-1),Θ}. Spatial dependence is accommodated at the second 127 

level of the hierarchical specification with random effects incorporated into Θ. The term pit = 128 
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Pr{Zi(t)|Z(t-1),Θ} represents the probability that the organism or disease is present in region i at 129 

time t, given the presence map Z(t-1) and conditional on Θ. We assumed that regions where the 130 

organism or disease is present remain inhabitated, so that pit = 1 if Zi(t-1) = 1; whereas, if region 131 

i is free of organism or disease at time t-1, so that Zi(t-1) = 0, we assumed a logistic specification 132 

with space varying coefficients 133 

log{pit /(1- pit)} = μt + λi NN[i,t-1]           [1] 134 

where NN[i,t-1] is the number of inhabited neighbors of region i at time t-1; μt is a time varying 135 

parameter representing a baseline probability of becoming inhabited; and λi is a spatially-varying 136 

parameter quantifying the local impact of inhabited regions on their uninhabited neighbors. 137 

Neighbors for NN[i,t-1] are defined using a Queen’s case (Moore neighborhood – i.e., edge or 138 

corner in contact signifies a neighbor) definition of spatial neighbors; however, alternate 139 

neighborhood configurations could easily be explored. The baseline rate μt is common to all 140 

regions, and for an uninhabited region with no inhabited neighbors at time t-1 (isolated from the 141 

spread wave) we have   142 

log{pit /(1- pit)} = μt       [2] 143 

so that μt can be thought of as representing the time-varying probability of  translocation events, 144 

describing random-jump movements by a species. Inclusion of terms for both diffusion and 145 

random-jump movements is important when spread occurs via separate mechanisms or at 146 

differing spatial scales. Mountain pine beetles, for example, spread via two independent 147 

mechanisms, actively over short distances (e.g., within forest stands), and passively via 148 

convective wind currents capable of transporting small populations for hundreds of kilometers 149 

(Safranyik & Carroll, 2006).  150 
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Comparison of equations [1] and [2] reveals that λi characterizes the change in the log-151 

odds of habitation for region i, arising from the presence of organisms in neighboring regions. 152 

Larger values of λi correspond to an increasing probability of spread from inhabited regions to 153 

uninhabited neighbors. As such, λi controls the rate of organism mobility or diffusion into region 154 

i, and the vector λ = (λ1,…, λn)' characterizes spatial variability in diffusion across the entire 155 

study area.  156 

 Using a hierarchical modeling approach, we allowed for temporal variation in the 157 

translocation parameters μ = (μ1,…, μT)' and spatial variation in diffusion parameters λ = (λ1,…, 158 

λn)'  using mixed model random effect specifications. The translocation component μ, is 159 

composed of a constant  μc, coupled with  time-varying mean-zero effects θt, so that 160 

tct
   [3] 161 

A weakly informative prior for μc was adopted, using a Normal distribution with mean 0 and a 162 

precision of 1/1000, or μc ~ N(0,0.001). The θt represent year-to-year variation in translocation, 163 

and are modeled independently as θt ~ N(0,τθ) with the variance τθ assigned a conditionally 164 

conjugate inverse-Gamma hyper-prior τθ ~ inverse-gamma(0.01,0.01). 165 

 The spatially-varying diffusion parameters λ = (λ1,…, λn)'  are modeled using a 166 

convolution prior 167 

iii
ah 

0
   [4] 168 

where α0 represents the baseline level of spread across the study area; hi ~ N(0,τh) are 169 

independent and identically distributed random effects representing spatially unstructured 170 

variation; and ai is a spatially correlated random effect, with the vector  a = (a1,…, an)' modeled 171 

using an intrinsic conditional autoregressive model – CAR(τa). This random effect formulation 172 

follows Besag, York and Mollie (1991), who suggest including both independent and spatially 173 
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correlated random effects.. Additional terms corresponding to spatially varying covariates can be 174 

easily incorporated in [4] to investigate relationships between covariates and the local rate of 175 

diffusion. The spatial CAR model for ai uses a Queen’s case (i.e., adjacency) definition of 176 

neighbors. In addition, a binary definition of weights is used, with neighbors coded as 1 and non-177 

neighbors as 0. Finally, our model specification is made complete by assigning a flat prior to α0, 178 

and weakly informative inverse-gamma(0.5,0.0005) hyper-priors for the variance components τh 179 

and τa. 180 

The vector Θ is the set of parameters in our model, with Θ = {h, a, θ, α0, μc, τα, τh, τθ}. 181 

With this specification, Bayesian inference for Θ is based on the posterior distribution 182 

[Θ|Z(1),…,Z(T)], where Z(1),…,Z(T) are binary data vectors representing a realized ecological 183 

spread process. The posterior distribution is computed using Markov chain Monte Carlo methods  184 

implemented in the free software WinBUGS (Lunn et al., 2000). The model code used for fitting 185 

this model can be obtained from the first author upon request.  186 

 187 

3. Model Evaluation Using a Simulation Study  188 

3.1 Simulation Study Data 189 

We carried out a simulation study to assess the model performance under different 190 

scenarios describing the spread of disease.  While employing Bayesian inference to ‘borrow 191 

strength’ can help address the issue of inaccurate estimation due to infrequent sampling (i.e., big 192 

area; small numbers), the opposite effect may be true for pooled estimates that are pulled too 193 

much towards the mean (Gelman and Price, 1999). When applied with real data the diffusion 194 

(spatial) and translocation (temporal) parameters will be unknown, therefore we adopt a 195 
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simulation-estimation approach to investigate the sensitivity of the model to changes in model 196 

parameter values and spatial scale.   197 

Spread datasets were simulated from a set of patterns representing realistic scenarios of 198 

spatial diffusion (Figure #a) and time-varying translocation (Figure #b), in combination with 199 

three different spatial scales. Spatial diffusion represented as a linear trend (Λ1) can be thought to 200 

represent a simplified spread process across a more homogeneous landscape, this scenario might 201 

be encountered, for example, in the presence of a latitudinal gradient. The Gaussian random field 202 

scenario (Λ2) is an example of a more complex, heterogeneous landscape, characteristic of a 203 

wide range of spread processes. Constant translocation (M1) represents a static level of random 204 

translocation events. Linear decreasing translocation (M2) represents a situation where a spread 205 

mechanism (e.g., fomite transmission of foot and mouth disease) is decreasing over time as 206 

control measures are put in place. Finally, oscillating translocation (M3) represents a seasonal 207 

cycle to translocation, as in the case of wind-driven transport which depends primarily on 208 

seasons. Variation in spatial scale (20x20, n = 400; 40x40, n = 1600; 80x80, n = 6400) is used to 209 

examine the impact of scale on model performance. Specifically, we are interested in how 210 

changes in the grain (resolution) of the data may affect results. Extent, the other aspect of spatial 211 

scale, is of less interest here, as we assume the extent of the disease is contained by the study 212 

area.  213 

< approximate location for Figure #a,b >The simulation-estimation procedure involved 214 

three steps: 1) generate a realistic spread scenarios using combinations of diffusion (Λ), 215 

translocation (M), and spatial scale (see Figure #); 2) simulate spread data from the scenarios; 216 

and 3) estimate the model based on the simulated data. Each combination of spatial diffusion 217 

pattern, time-varying translocation pattern, and spatial scale comprised one spread scenario, for a 218 
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total of 18 different scenarios (the simulated spread datasets for the 6 scenarios at the 40x40 219 

scale are shown in Figure ##).  220 

< approximate location for Figure ## > 221 

3.2 Examining Model Fit 222 

To compare the true and estimated diffusion values we used a global chi-square goodness 223 

of fit statistic where bins were set at intervals of 0.25. The test is a comparison of the number of 224 

observations in each bin for the known parameters and the number of estimates in each bin in the 225 

estimated parameters. In addition to chi-square tests, we also report standardized residuals for 226 

both diffusion and translocation, defined as the absolute value of the difference between the true 227 

and estimated parameter value, divided by the number of observations (n for diffusion, T-1 for 228 

translocation). 229 

To evaluate model fit to the simulated data, we used posterior predictive checking 230 

(Gelman et al., 2004). To perform posterior predictive checks, 100 draws from the posterior 231 

distribution of all diffusion and translocation parameters were obtained. Data were simulated 232 

with the model using these parameter values to create 100 replicate datasets from the posterior 233 

predictive distribution. We assessed similarity between these replicates and the observed data for 234 

some test quantity of interest (Gelman et al., 2004). In our case the observed data are the original 235 

data used to describe a spread process, and were generated by the model using the chosen 236 

parameter values, while in practical applications this would be the observed spread data. The test 237 

statistic we used was the number of new cells inhabited in each time period, Inht, where 238 






n

i

iit
tZtZInh

1

)1()(       [5] 239 

Two of the simulated datasets were selected for checking based on the results of the parameter 240 

estimation recovery analysis so that one of the better performing scenarios, and one of the poorer 241 
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performing scenarios were evaluated, both using the 40x40 spatial scale to ensure comparability. 242 

In each case the test statistic was evaluated at each time point to determine if a value of Inht 243 

computed for the data falls outside the main mass of the corresponding posterior predictive 244 

distribution, in which case we have evidence that the model does not fit this aspect of the data.   245 

We also examined the spatial structure of local diffusion using map comparison analysis. 246 

The objective of map comparison is to uncover similarities (or differences) between expected 247 

(Λ) and estimated (λ) diffusion maps, and evaluate whether two maps could have been generated 248 

by the same process. This is facilitated in the simulation examples as we have both an expected 249 

diffusion map (e.g., those Λ in Figure 2 from which the spread process was generated) that we 250 

can compare to the mean posterior predictive estimates (λ). In terms of model validation, 251 

considering spatial structure provides improved confidence in estimated λ over purely aspatial 252 

comparisons. The structural similarity (SSIM) index was selected as an exploratory statistic for 253 

comparing maps (Wang et al., 2004). SSIM incorporates a Gaussian weighting function, to 254 

assess similarity across spatially local regions. This is in contrast to direct pixel to pixel 255 

comparisons, which ignore spatial structure in maps, often producing comparison measures 256 

highly sensitive to slight spatial misalignment (Pontius Jr., 2000). SSIM considers three 257 

components for map comparison: luminance, contrast, and structure, relating to local differences 258 

in mean, variance and covariance respectively (Wang et al., 2004). Note that these three 259 

components are relatively independent, and changes in one component will not necessarily affect 260 

others. SSIM takes the following spatially local form, computing a similarity statistic for each 261 

spatial unit: 262 


)]([)]([)]([)( isiciliSSIM        [6] 263 
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where i denotes the i
th

 spatial unit, l the luminance component, c the contrast component, and s 264 

the structure component (see Wang et al., 2004 for further details). The exponents α, β, and γ can 265 

be used to weight individual components, with default values taken as α = β = γ = 1. The local 266 

components l(i) and c(i) are strictly positive while s(i) can take on negative values. We report 267 

only the mean global statistic for each of the three components and overall similarity, noting that 268 

although locally the product from [6] holds, due to summation rules the mean SSIM value does 269 

not equal the product of the means of each component. When two maps are identical, SSIM = 1, 270 

and values decrease from 1 as similarity decreases. SSIM was calculated for all 6 simulated 271 

scenarios at the 40x40 spatial scale. Given the map size (40x40), we selected a Gaussian 272 

weighting function with parameters h = 3 and sd = 0.5. SSIM results were insensitive to minor 273 

changes to h and sd.  274 

As a final check on model sensitivity, we varied the hyper-parameters corresponding to 275 

the prior variances for random effects governing variation in both diffusion and translocation to 276 

other suggested alternatives, inverse-gamma(0.001, 0.001) and inverse-gamma(0.1, 0.1). The 277 

effects of these prior adjustments on point estimates for diffusion and translocation are reported. 278 

3.3. Simulation Study Results 279 

The global goodness of fit analysis for the 27 different simulated spread scenarios are 280 

reported in Table #. These global chi-square tests reveal that in none of the scenarios were the 281 

estimated parameters significantly different than the true values. The standardized residuals 282 

demonstrate the effects of changes in the pattern of spread and spatial scale on diffusion 283 

(Appendix B). Residuals tended to increase with larger study areas. For the 20x20 and 40x40 284 

spatial scales, the Λ2 spatial trend produced larger error than the Λ1 spatial trend or the Λ3 285 

Gaussian random field; however error was largely similar for all three patterns for the 80x80 286 
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study area. For translocation, the opposite general pattern holds, with larger residuals for smaller 287 

datasets. This is likely due to the lack of available cells for translocation to occur at smaller 288 

scales. The interdependency between diffusion and translocation is illustrated in Appendix B. 289 

Interdependency is clearly impacted by spatial scale, with fairly similar patterns in residuals at 290 

the 20x20 scale, and less so at larger scales. 291 

< approximate location for Table # >  292 

Analysis of model fit using posterior predictive checks based on the statistic Inht is 293 

presented in Figure 5. For datasets simulated from scenario Λ2Μ3 and scenario Λ3Μ2, the test 294 

statistic fell within the 2.5 and 97.5 percentiles (95% credible interval), 97 and 98 times (out of 295 

100) respectively, indicating a very good fit to the data. For the simulated data, the model 296 

appears to capture the timing of newly inhabited cells well. 297 

< approximate location for Figure 5 > 298 

 Map comparison of estimated (λ) and expected (Λ) diffusion maps (40x40 spatial scale) 299 

revealed different trends from purely aspatial measures reported in Table ##. Estimated λ maps 300 

associated with Μ2 showed the lowest similarity in all three Λ scenarios. In the case of scenarios 301 

Λ1Μ2 and Λ2Μ2, mean SSIM values were extremely low (-0.026 and 0.064 respectively) 302 

indicating poor model fit. These low SSIM values can be attributed to low scores in the 303 

luminance component (0.231 and 0.214 respectively). Map similarity was considerably higher in 304 

the other scenarios, with a maximum of 0.754 for scenario Λ1Μ1.   305 

< approximate location for Table ## > 306 

 Finally, model sensitivity to hyper-priors on variance parameters of the spatial CAR 307 

component (τa) revealed the model inference to be robust to the prior forms considered. Effects 308 

of changes in these hyper-priors on point estimates of diffusion and translocation are outlined in 309 
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Table 2. For both diffusion and translocation, changes in parameter estimates ranged from 0 to 310 

0.03 for posterior means, and 0 to 0.02 for posterior standard deviations.  311 

< approximate location for Table 2 > 312 

 Overall, the simulation study provides convincing evidence that the model and the 313 

corresponding Bayesian inference are able to recover the parameter values used to simulate the 314 

data. Changes to variance hyper-parameters for diffusion and translocation have little impact on 315 

estimation in the settings we considered. Further, the effect of spatial scale has also been shown 316 

to be an important consideration. Highlighted by map comparison analysis, spatial structure does 317 

indeed play an important role in assessment of maps of true vs. estimated output parameters. 318 

Map comparison revealed that when maps of true (Λ) vs. estimated (λ) diffusion parameters were 319 

dissimilar the bulk of this difference can be attributed to the magnitude of the values 320 

(luminance), and that our model does effectively reveal expected spatial structure. This means 321 

that in some cases interpretation should be limited to spatial patterns observed, taking the 322 

magnitude of reported λ values as potentially misleading. In many cases modeling efforts 323 

primarily investigate spatial patterns of output parameters (e.g., high areas vs. low areas), and 324 

less so the magnitudes of output values. The model is effective at identifying such spatial 325 

variation in parameter estimates.  326 

4. Empirical Case Study – Mountain Pine Beetle in Western Canada 327 

4.1. Background 328 

Mountain pine beetle is the most destructive biotic agent of mature pine forests in 329 

western North America (Safranyik & Carroll, 2006). Endemic to this region, mountain pine 330 

beetles typically attack weakened pine trees scattered throughout the forest. Periodically, when 331 

favorable conditions manifest, mountain pine beetle populations escalate to epidemic levels, 332 
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causing mortality to mature pine trees covering thousands of hectares (Safranyik & Carroll, 333 

2006). Originating around 1998, the current outbreak is the largest on record and has devastated 334 

western Canada’s forest industry, causing substantial timber losses (British Columbia Ministry of 335 

Forests and Range, 2007). A warming climate combined with forest fire suppression has resulted 336 

in an overabundance of mature lodgepole pine (Pinus contorta) trees on the landscape. As 337 

lodgepole pine are the preferred host of mountain pine beetle, the combined effect of a warming 338 

climate and forest fire suppression is listed as probable cause for the magnitude of the current 339 

outbreak (Carroll et al., 2006).  340 

The historical range of mountain pine beetle in Canada is predominantly within the 341 

province of British Columbia (Figure 3). Current epidemic mountain pine beetle populations 342 

have breached historic physiographic (e.g., Rocky Mountains) and climatic barriers to spread 343 

(Safranyik et al., 2010). Substantial beetle populations now exist in the province of Alberta, 344 

where the range of the beetles preferred host – lodgepole pine, meets the range of jack pine 345 

(Pinus banksiana) (Figure 3). Empirical evidence has found that jack pine is an alternative 346 

suitable host for mountain pine beetle (Furniss and Schenk, 1969; Cerezke, 1995). In the absence 347 

of climatic factors inhibiting beetle populations, jack pine, present throughout the boreal forest, 348 

could provide continuous habitat facilitating further eastward expansion by mountain pine beetle 349 

and negative economic and ecological consequences in Canada’s boreal region (Logan and 350 

Powell, 2001; Carroll et al., 2006; Safranyik et al., 2010).  351 

< approximate location for Figure 3 > 352 

The objective of this case study is to use the proposed Bayesian spread model to learn 353 

about processes governing the spread of mountain pine beetle at the boundary of its historical 354 

spatial range. Mountain pine beetle spread is of two types; active and passive spread, which 355 
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facilitate movement of beetle populations. Active spread represents spatially local dispersal 356 

events where beetles fly within or between neighboring pine stands and is the principle mode of 357 

spread (Safranyik et al., 1992). Mountain pine beetles are also capable of passive spread whereby 358 

beetles are carried long distances via convective wind currents during periods of emergence 359 

(Shepherd, 1966; Furniss and Furniss, 1972; Ainslie and Jackson, 2011) . The model we have 360 

developed captures active spread through the spatially local diffusion parameters – λ, and passive 361 

spread through the temporally stochastic translocation parameters – μ. We hope to gain insight 362 

into mountain pine beetle spread during the current epidemic by interpreting spatial variation in 363 

λ, and temporal variation in μ. 364 

4.2. Data and Study Area 365 

 Mountain pine beetle infestation data were obtained from the British Columbia Ministry 366 

of Forests and Range
1
 and the Alberta Department of Sustainable Resource Development

2
 for 367 

each year of our study (1999 – 2009). These infestation data are primarily obtained through 368 

aerial overview surveys, but also in situ measurements and remotely sensed data sources. 369 

Mountain pine beetle emergence occurs during a short one month window during the summer in 370 

the study area. As such, the spread process can be measured at discrete (i.e., annual) intervals. 371 

Infestation events are represented as both points (indicating a small cluster of infested trees) and 372 

polygons (a large area of infestation).   373 

 We selected a rectangular study area that covers the northern portion of the eastward 374 

expansion by mountain pine beetle into the province of Alberta (inset Figure 3). A 12 km grid 375 

was demarcated across the study area, generating n = 2310 contiguous spatial units. Similar 12 376 

km spatial units have been used for investigating characteristics of a previous mountain pine 377 

                                                 
1
 More Info at: http://www.for.gov.bc.ca/hfp/health/overview/overview.htm 

 
2
 More Info at: http://www.srd.alberta.ca/ManagingPrograms/ForestPests/ForestPestSurveyData.aspx 
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beetle outbreak in British Columbia (Aukema et al., 2008; Zhu et al., 2008) and spatial 378 

synchrony within the current outbreak (Aukema et al., 2006).  379 

 We were also interested in investigating relationships between mountain pine beetle 380 

spread (Figure 4a) and environmental factors. Two spatial covariates, elevation and forest cover 381 

(see Figure 4 b and c), were identified in the literature as important in governing local spread of 382 

mountain pine beetle. Elevation was taken as the mean of elevation values within each spatial 383 

unit using a fine grain elevation dataset (spatial resolution of 25 m). Percent forest cover for each 384 

spatial unit was determined using a national land cover database (Wulder et al., 2008). These 385 

spatial covariates were incorporated into the model for λ [4], and relate to local diffusion so that 386 

[4] becomes 387 

iiii
ahX  

0
  [7] 388 

where Xi is a vector of spatial covariates (e.g., elevation, percent forest cover) at location i, and β 389 

are the associated coefficients.  390 

< approximate location for Figure 4 > 391 

 Exploratory spatial analysis revealed that mountain pine beetle translocation events 392 

exhibited distance-dependence, whereby translocation events occur more frequently proximal to 393 

previously infested regions. This phenomenon is commonly associated with the characteristic 394 

leptokurtic pattern of spread (e.g., in animal-borne diseases #Fergusan, Lindstrom#, human 395 

diseases #REF#, and with invading organisms, Lewis 1997) whereby translocation events are 396 

distance-dependent relative to the spread wave. . In this scenario,  extremely long distance 397 

translocation events are rare, but still possible. To account for this effect, we considered a more 398 

general model for the translocation component that more appropriately resembles this distance-399 

dependant spread process. The new distance-dependent translocation parameter is defined as: 400 
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titcit
d  

~    [8] 401 

where 
it


~ is a spatial and temporally varying translocation parameter, dit is the distance (centroid 402 

to centroid) from cell i to the nearest infested region at time t, with coefficient γ, and μc and θt are 403 

as defined in [3]. This treats the distance values (dit) as a space-time covariate modulating the 404 

translocation component.  405 

4.3. Model Implementation 406 

Several variations of the model were implemented incorporating different parameters 407 

(Table 1). For each model, two MCMC chains were run to fit the model. Convergence was 408 

assessed following Brooks and Gelman (1998), and a conservative burn-in of 10 000 iterations 409 

was selected. Following burn-in, 20 000 samples from each chain were retained for inference. 410 

Model selection was based on the  deviance information criterion (DIC), which combines the 411 

deviance with a penalty for model complexity (Spiegelhalter et al., 2002). Posterior mean, 412 

variance, and 95% equal-tailed credible intervals were used to summarize the posterior 413 

distributions.  414 

< approximate location for Table 1 >4.4. Case Study Results 415 

Variation in DIC between model 1 and 2 was substantial, indicating that the inclusion of 416 

a distance-dependent translocation term (
it


~ from [8]) improved the model (see Table 1). As 417 

such, the four subsequent model specifications all use the 
it


~  definition from [8]. The variation 418 

in DIC between models that use the 
it


~  definition for translocation (models 2 – 6) was small 419 

(Table 1). The addition of the aspatial random effect parameter (h) had little effect on the DIC. 420 

However we include h in subsequent model specifications as it can be used to interpret variation 421 

in mountain pine beetle spread not captured by the smoothing effect of the CAR model and/or λ 422 

covariates; which may relate to barriers to spread. Model 6, the most complex model tested 423 
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(including both the elevation and forest cover covariates) resulted in the lowest DIC value, and 424 

forms the basis for further discussion.  425 

To evaluate model fit we performed a posterior predictive check similar to that described 426 

in the simulation experiment. For the case study data, we drew 1000 samples from the posterior 427 

distribution of each parameter and these were then used to draw 1000 replicate datsests (Zrep) 428 

from the posterior predictive distribution. The test statistic (inht – see [5]) of the true infestation 429 

data fell within the 2.5 and 97.5 percentiles (95% posterior predictive credible interval) of the 430 

simulated Zrep data in all but two years (8 out of 10), indicating a reasonable model fit (Figure 6). 431 

The two anomalies were associated with the first year after initial infestation (2000) and an 432 

extreme peak in infestations that occurred in 2007. 433 

< approximate location for Figure 6 > 434 

A negative relationship (posterior mean = -0.153, 95% C.I. = [-0.337, 0.019]) was 435 

observed between local diffusion rate and the elevation covariate. A negative relationship 436 

between mountain pine beetle and elevation in British Columbia has been previously reported, 437 

and is believed to be linked to elevational constraints on pine species, the beetles preferred host 438 

(Aukema et al., 2008; Zhu et al., 2008). This relationship does not necessarily apply east of the 439 

Rocky Mountains and may be reason that this relationship is rather weak (e.g., the 95% credible 440 

interval covers zero). The rugged topography of the Rocky Mountains historically provided a 441 

physical barrier to eastward expansion by mountain pine beetle, with only a few small cases of 442 

infestation observed east of the Rockies (see Cerezke, 1989). The current epidemic has breached 443 

this barrier, and continued eastward expansion by mountain pine beetle through the boreal will 444 

not be hindered by topography as it is comparably flat.  445 
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A positive relationship (posterior mean = 0.2681, 95% C.I. = [0.130, 0.406]) was 446 

identified between local diffusion rate and forest cover. In British Columbia, elevation had 447 

previously been used as a surrogate for forest cover information, as here lodgepole pine is found 448 

primarily at lower elevations. As previously mentioned, east of British Columbia topography is 449 

far less variable, and pine species are found throughout the range of elevations within the boreal 450 

forest. As mountain pine beetle continues its eastward expansion, variables that more 451 

appropriately represent the availability of suitable pine hosts directly will be most useful for 452 

predicting infestation.  453 

Using a map of the spatially-varying diffusion parameter (λ) we can highlight regional 454 

variability in the rate of local spread (Figure 7a). Comparing to the time of infestation map 455 

(Figure 4a) we can clearly see that high λ values are found immediately east of the originally 456 

infested regions. Here due to the rugged topography, mountain pine beetle spread quickly along 457 

linear forest tracts in valley bottoms as has been previously demonstrated (Robertson et al., 458 

2009). Caution should be taken interpreting λ values in regions where no infestation has occurred 459 

(such as in the most eastern portion of our study area). Here the model infers a continuous λ 460 

surface from few relevant λ measurements and posterior variance is highest (Figure 7d).  461 

< approximate location for Figure 7 > 462 

The map of the aspatial random effect parameters (h), can be used to identify regions 463 

where the smoothing of the CAR effect (Figure 7b) over-estimates (negative values) or under-464 

estimates (positive values) the rate of local diffusion (Figure 7c). Regions over-estimated 465 

(negative values in Figure 7c) by the CAR portion of the model are likely due to abrupt changes 466 

in land cover resistant to mountain pine beetle (such as large lakes or mountain peaks). This 467 

interpretation may provide a valuable tool for examining landscape barriers on spread where 468 



  22 / 48 

representation of barriers is discrete rather than continuous. Reason for areas under-estimated 469 

(positive values in Figure 7c) may be due to the topographic effect mentioned earlier. However, 470 

the magnitude of the h effects are quite small (-0.007 to 0.005). Given that the h effect is quite 471 

small, the λ maps are therefore predominantly associated with a combination of the CAR effect 472 

(a) and the environmental covariates (Xβ). 473 

We also examine annual changes in translocation (
it


~ ) through time, by way of the 474 

parameter θt. Mountain pine beetle translocation is highest in 2007, identified by the sharp peak 475 

in θt values in that year (Figure 8). In this example, interpretation of temporal trends in θt 476 

requires consideration of original mountain pine beetle infestation data sources. Aerial overview 477 

surveys and remotely sensed data rely on visual cues of tree mortality (i.e., foliage turning red), 478 

which occurs 1-2 years after beetle presence. Thus, the peak value of θt observed in 2007 479 

actually corresponds to increased translocation events by mountain pine beetle in 2005 or 2006. 480 

This is in line with reports of extensive beetle activity in 2006 (Carroll, 2010). Although 481 

temporal climate covariates were not investigated here, factors such as uncharacteristically warm 482 

summers or cold winters influence beetle populations, and the success of the beetles passive 483 

spread mechanism (Stahl et al., 2006). 484 

< approximate location for Figure 8 > 485 

With some ecological invasions, barriers may be introduced as a management tactic, 486 

effective at slowing the spread of an invading species (Sharov and Liebhold, 1998). In Western 487 

Canada, clear-cut harvests and controlled forest fires have been implemented as barriers to 488 

mountain pine beetle spread through the removal of large, contiguous sections of potential host 489 

trees. In British Columbia, the voracity of the current epidemic has circumvented any mitigation 490 

efforts (Wilson 2004), however in Alberta there is still hope that these, and other preventative 491 
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measures will prove successful at stopping future eastward beetle spread. Preventing continued 492 

expansion by mountain pine beetle will be challenging given evidence that the beetles 493 

reproductive success improves in lodgepole pine stands outside of its historical range (Cudmore 494 

et al., 2010). Further, from our analysis it is clear that east of the Rocky mountains, mountain 495 

pine beetle spread, like many other spread processes (e.g., Suarez et al., 2001), is dominated by 496 

translocation events. When translocation dominates ecological invasions, the organism is often 497 

able to jump spread barriers rendering them ineffective. In such cases, it is necessary to carefully 498 

evaluate whether the introduction of barriers will provide the intended ecosystem and economic 499 

benefits (Sharov and Liebhold, 1998).  500 

 501 

5. Discussion & Conclusions 502 

 503 

The validation process we adopt is an example of how both aspatial and spatial indices 504 

can be incorporated into the validation procedure. Following guidelines of Gelman et al. (2004), 505 

we use posterior predictive checking as an aspatial measure of model fit that can be used even 506 

when true parameter values are unknown. This posterior predictive check revealed that our 507 

model is sufficient at recovering the timing of new infections. In the simulation study, we were 508 

able to complement this aspatial technique with a map comparison analysis (SSIM - Wang et al., 509 

2004) to assess spatial structure of λ values. Map comparison analysis revealed that in some 510 

cases estimated λ values were different from expected in magnitude, but that in general the 511 

spatial pattern of λ values was retrieved. The SSIM method enables creation of maps of local 512 

differences in mean, variance, and covariance, providing information on the spatial structure and 513 

differences in each (although we did not include such maps in this presentation). This spatial 514 
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approach to model evaluation represents a relatively simple procedure that can be easily 515 

implemented with existing models providing valuable and unique insight on how spatial 516 

structure of parameters relate to model performance. The SSIM measure was originally designed 517 

for evaluating image compression algorithms, and only recently has been proposed as a useful 518 

measure for quantitative comparison of continuous-value maps #Hagen-Zanker#. Thus, 519 

improving our understanding of how the SSIM (or other similar statistics) can be used as spatial 520 

measures of model evaluation remains an ongoing endeavor. .  521 

Both in the simulation examples and the case study we model spread across a regular 522 

tessellation (grid). In the mountain pine beetle example, we selected 12 km units as spatial unit 523 

for which to model spread. Our analysis was undoubtedly impacted by this selection, but also, by 524 

the scales at which the infestation and covariate data were collected. In the context of 525 

epidemiological spread models, how the at-risk population, the environment, , and population-526 

environment interaction are represented will undoubtedly impact results. The use of regular 527 

and/or square spatial units are not required, and as in Smith et al. (2002) an irregular lattice (such 528 

as counties) could be appropriately used with this model. The implementation of an irregular 529 

lattice map structure would require careful consideration to the definition of spatial weights. For 530 

example, it may be useful to consider the proportion of the boundary associated with infected 531 

polygons surrounding an uninfected region as a way to accommodate the spatial structure of 532 

infected neighbors in [4]. Alternatively, higher-order spatial weights functions (e.g., using a 533 

distance-decay effect) may be useful for quantifying disease pressure in uninfected regions 534 

#REF#. 535 

Working within a hierarchical Bayesian framework allows for data at multiple 536 

scales/representations to be incorporated. Often the accommodating nature of a hierarchical 537 
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Bayes framework is used as a security blanket when tasked with modeling erroneous or sparse 538 

datasets. However, inferences resulting from such analyses are still a product of limited datasets 539 

(i.e., garbage in – garbage out).  Thus care must be taken to utilize a hierarchical Bayes 540 

framework in such a way as to maximize the potential learning from available data, while 541 

recognizing the limitations of a given dataset. The flexibility of the model presented here, from 542 

the basic structure introduced in section 2 to the more complex variations used in the mountain 543 

pine beetle example, and further proposed in the discussion, can provide an accommodating 544 

framework for modeling many characteristic dual-mechanism (diffusion-translocation) spread 545 

processes.. A key feature of the proposed model is the incorporation of spatially-varying 546 

diffusion parameters, which allow for local differences in rates of spread across the study region, 547 

accommodating diffusion across heterogeneous landscapes. Incorporating spatially varying 548 

parameter values into a model framework (for example using geographically weighted regression 549 

#Fotheringham# or, more broadly, any spatially varying coefficient model #e.g.,Waller et al. 550 

2007#)  is becoming increasingly popular for examining spatial heterogeneity in a wide range of 551 

applications, for example disease mapping (Best et al. 2005), crime rates, (Wheeler and Waller 552 

2009), and housing values (Bitter et al. 2007). The additional complexity of varying parameters 553 

over space is no longer a computational burden given modern computing capabilities, and 554 

resulting maps of parameter estimates, such as those in Figure 7, can provide material for 555 

interesting spatially-specific inference. However, it can be easy to attempt increasingly complex 556 

models beyond what is capable of being learned from the data (i.e., over-fitting). This can lead to 557 

a variety of problems including high parameter variance and sensitivity #REF#, and poor overall 558 

fit. It is up to the researcher to determine what can be realistically learned from the data with 559 

respect to spatially varying parameters,  560 
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Here, using a convolution model for the diffusion process, we examined spatially 561 

structured (a) and non-structured (h) error terms (e.g., following the BYM model, Besag, York, 562 

and Mollie 1991). In theory, maps of the non-structured term could be linked to spread barriers, 563 

although in this example the effect was relatively small in magnitude. In ecological examples, 564 

barriers are often a function of physical properties of the landscape (Sharov and Liebhold 1998). 565 

However in epidemiology, where infections are commonly transferred along networks, the 566 

identification of barriers will be more complex as they are related to the connectivity of infected 567 

and susceptible nodes (Eubank et al. 2004, Keeling 2005). The identification and interpretation 568 

of various anomalies (e.g., barriers) within maps of spatially varying parameter estimates can 569 

provide valuable insight into a given process or limitations of a given model. However, 570 

quantifying barriers (whether they are physical objects or properties of the underlying data) 571 

remains a challenging endeavor in various facets of spatial data analysis (Cova and Goodchild 572 

2002). 573 

In many applications, spread processes are impacted by factors varying across space and 574 

time (e.g., environmental, socio-economic). In the area considered in our study, mountain pine 575 

beetle are sensitive to warm august temperatures (Logan and Bentz, 1999), which trigger 576 

emergence and local dispersal. Given sufficient climate data for each spatial and temporal unit, a 577 

spatially- and temporally-varying climate covariate (cij) could be included through simple 578 

modifications to [4] to help characterize diffusion rates associated with beetle sensitivity to 579 

temperature in summer months. In epidemiological problems, a similar term could be associated 580 

with a dynamic space-time covariate associated with the spatial diffusion process. Alternatively 581 

factors associated with the baseline probability of infection (related to translocation here) can be 582 

incorporated. We used a distance-dependent covariate to incorporate the fact that mountain pine 583 
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beetle translocation tended to occur proximal to existing infestations. In human disease spread, 584 

population mobility has been identified as an important factor in the underlying probability of 585 

disease spread (Viboud et al. 2006). Population mobility is dynamic in both space (regional 586 

differences) and time (seasonal mobility patterns), and could be represented using a space-time 587 

covariate for the baseline probability of infection in [3].  588 

In conclusion, there is a growing demand, in epidemiology as well as ecology, for tools to 589 

incorporate a variety of spatially and temporally explicit data sources in a flexible statistical 590 

modeling framework in order to study spread processes. As we have demonstrated using 591 

simulated datasets along with the case study investigating mountain pine beetle spread in 592 

Western Canada, the  framework we have proposed affords the ability to generate a finer 593 

understanding of how landscape features might affect dispersal mechanisms, while also allowing 594 

for unpredictable translocation events.  This dual-mechanism (diffusion-translocation) process of 595 

spread is characteristic of a wide array of diseases (Green et al., 2006), as well as biological 596 

invasions (Andow et al., 1990; Lewis, 1997; Bossenbroek et al., 2001). Finally, the approach 597 

taken here presented a novel and insightful method for model-checking; specifically, the use of 598 

map comparison for evaluating spatially varying parameter estimates. The development of 599 

spatial measures for model evaluation remains an ongoing research problem, and is one area for 600 

future work being pursued by the authors.  601 
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 List of Table Captions 

Table 1: Model parameters used in each of 6 implemented models, along with DIC 

results. Model 6 was identified as the best model based on DIC and selected for further 

analysis.  

 

Table 2: Sensitivity analysis of the prior distribution of the variance parameter for the 

CAR model (τa) used in the model (*) with two alternate selections. 
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List of Figure Captions 

Figure 1: Graph diagramming the modeled relationship between input data, parameters, 

and hyper-parameters of the Bayesian space-time model for spread processes. 

 

Figure 2: Simulated-estimation approach used in the study. Data were simulated using the 

model using three patterns for translocation (Μ) over 100 time-steps and three patterns 

for diffusion (Λ) onto 20x20, 40x40, and 80x80 study areas. The model was fitted to 

simulated datasets to obtain estimates of the generating parameters. 

 

Figure 3: Historical range of mountain pine beetle and its preferred host species 

(lodgepole pine) and a potential new host spieces (jack pine) with the extent of mountain 

pine beetle infestation in 2009. Our study area (inset) contains the northern portion of the 

eastward expansion of mountain pine beetle into the boreal forest. 
1
 Historical range of 

mountain pine beetle adapted from Fig. 4 in Safranyik and Carroll (2006). 
2
 Tree species 

range maps from Little (1971), available at: http://esp.cr.usgs.gov/data/atlas/little/. 

 

Figure 4: Maps showing: a) year of initial mountain pine beetle infestation across the 

study area and two spatial covariates used in the model b) mean elevation, and c) percent 

forest cover.   

 

Figure 5: Posterior predictive checking for scenario Λ2Μ1 (top) and Λ3Μ2 (bottom) 

evaluating the number of newly inhabited cells at each time period. Error bars generated 

from replicates simulated from 100 draws of the posterior distributions of model 

http://esp.cr.usgs.gov/data/atlas/little/
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parameters (λi, μt), dots indicate the observed data. Number of times the test statistic (see 

equation [5]) of the observed data fell outside of the 95% C.I. for the yrep data was: 3 in 

scenario Λ2Μ1 and 2 in scenario Λ3Μ2, indicating excellent model fit.  

 

 

Figure 6: Posterior predictive checking for mountain pine beetle case study evaluating the 

number of newly infested cells at each time period. Error bars generated from replicates 

simulated from 1000 draws of the posterior distributions of model parameters (λi, it

~ ), 

dots indicate observed data. Note: No Inf. is the number of cells that do not become 

infested over the study time period. 

 

Figure 7: Maps of the posterior means for a) local diffusion parameter – λ, b) CAR model 

effect – a, and c) aspatial random effect – h; with maps of posterior variance shown 

below. 

 

Figure 8: Graph of mean posterior of parameter θt, with 95% C.I. error bars, depicting 

annual variation in sporadic translocations events, which relates to passive spread by 

mountain pine beetle. The peak observed in 2007 corresponds to extensive beetle activity 

documented in 2006.  
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Table 2: Sensitivity analysis of the prior distribution of the variance parameter for the 

CAR model (τa) used in the model (*) with two alternate selections.  

gamma   (0.5, 0.0005)* (0.001, 0.001) (0.1, 0.1) 

Posterior Mean   

μ[37] -4.88 -4.89 -4.90 

μ[80] -6.76 -6.79 -6.78 

λ[119] -0.02 0.01 0.00 

λ[794] 0.79 0.80 0.81 

Posterior Standard Deviation   

μ[37] 0.24 0.24 0.25 

μ[80] 0.70 0.70 0.70 

λ[119] 0.30 0.30 0.30 

λ[794] 0.27 0.27 0.27 
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Table 1: Model parameters used in each of 6 implemented models, along with DIC 

results. Model 6 was identified as the best model based on DIC and selected for further 

analysis. 

Model 

Model Parameters 

DIC λ μ 

α0 a h elev % for μconst θ dij 

1 x x    x x  6935.5 

2 x x    x x x 5623.0 

3 x x x   x x x 5626.2 

4 x x x x  x x x 5626.1 

5 x x x  x x x x 5625.7 

*6 x x x x x x x x *5617.9 

* - model with best fit, presented in case study 

elev – elevation covariate, %for – forest cover covariate 
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Figure 1: Graph diagramming the modeled relationship between input data, parameters, 

and hyper-parameters of the Bayesian space-time model for spread processes.
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Figure 2: Simulated-estimation approach used in the study. Data were simulated using the 

model using three patterns for translocation (Μ) over 100 time-steps and three patterns 

for diffusion (Λ) onto 20x20, 40x40, and 80x80 study areas. The model was fitted to 

simulated datasets to obtain estimates of the generating parameters.
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Figure 3: Historical range of mountain pine beetle and its preferred host species 

(lodgepole pine) and a potential new host spieces (jack pine) with the extent of mountain 

pine beetle infestation in 2009. Our study area (inset) contains the northern portion of the 

eastward expansion of mountain pine beetle into the boreal forest. 
1
 Historical range of 

mountain pine beetle adapted from Fig. 4 in Safranyik and Carroll (2006). 
2
 Tree species 

range maps from Little (1971), available at: http://esp.cr.usgs.gov/data/atlas/little/. 

http://esp.cr.usgs.gov/data/atlas/little/
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Figure 4: Maps showing: a) year of initial mountain pine beetle infestation across the 

study area and two spatial covariates used in the model b) mean elevation, and c) percent 

forest cover.   
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Figure 5: Posterior predictive checking for scenario Λ2Μ1 (top) and Λ3Μ2 (bottom) 

evaluating the number of newly inhabited cells at each time period. Error bars generated 

from replicates simulated from 100 draws of the posterior distributions of model 

parameters (λi, μt), dots indicate the observed data. Number of times the test statistic (see 

equation [5]) of the observed data fell outside of the 95% C.I. for the yrep data was: 3/100 

time periods in scenario Λ2Μ1 and 2/100 time periods in scenario Λ3Μ2, indicating 

excellent model fit. 
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Figure 6: Posterior predictive checking for mountain pine beetle case study evaluating the 

number of newly infested cells at each time period. Error bars generated from replicates 

simulated from 1000 draws of the posterior distributions of model parameters (λi, it

~ ), 

dots indicate observed data. Note: No Inf. is the number of cells that do not become 

infested over the study time period. 
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Figure 7: Maps of the posterior means for a) local diffusion parameter – λ, b) CAR model 

effect – a, and c) aspatial random effect – h; with maps of posterior variance shown 

below. 
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Figure 8: Graph of mean posterior of parameter θt, with 95% C.I. error bars, depicting 

annual variation in sporadic translocations events, which relates to passive spread by 

mountain pine beetle. The peak observed in 2007, corresponds to extensive beetle activity 

documented in 2006.  
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Appendix A: Global goodness of fit analysis results comparing true and estimated 

diffusion and translocation parameters for different spread scenarios and spatial scales. 

Dataset Diffusion Translocation 

20x20 Std Res Std Res / n chi Sq P-value Std Res Std Res / t-1 

Λ1Μ1 82.55 0.21 67.2 0.14 99.44 1 

Λ1Μ2 117.96 0.29 37.1 0.24 65.98 0.67 

Λ1Μ3 65.65 0.16 44 0.31 63.55 0.64 

Λ2Μ1 389.77 0.97 60.5 0.13 222.72 2.25 

Λ2Μ2 186.93 0.47 39.9 0.3 184.6 1.86 

Λ2Μ3 313.87 0.78 31.5 0.49 208.35 2.1 

Λ3Μ1 76.12 0.19 77 0.11 80.64 0.81 

Λ3Μ2 157.8 0.39 39.9 0.3 2.18 0.02 

Λ3Μ3 114.18 0.29 38.9 0.19 11.39 0.12 

40x40       

Λ1Μ1 551.69 0.34 99 0.24 121.69 1.23 

Λ1Μ2 518.2 0.32 47.7 0.36 41.85 0.42 

Λ1Μ3 580.08 0.36 58.7 0.31 48.65 0.49 

Λ2Μ1 863.32 0.54 99 0.24 154.78 1.56 

Λ2Μ2 1093.67 0.68 55 0.29 150.77 1.52 

Λ2Μ3 1550.23 0.97 66 0.28 204.74 2.07 

Λ3Μ1 624.96 0.39 99 0.08 62.18 0.63 

Λ3Μ2 584.96 0.37 55 0.29 11.01 0.11 

Λ3Μ3 597.65 0.37 58.7 0.31 27.35 0.28 

80x80       

Λ1Μ1 5932.75 0.93 99 0.24 134.11 1.35 

Λ1Μ2 7100.85 1.11 66 0.28 44.98 0.45 

Λ1Μ3 2111.98 0.33 66 0.28 52.6 0.53 

Λ2Μ1 7224.69 1.13 99 0.24 151.21 1.53 

Λ2Μ2 3658.6 0.57 66 0.28 88.71 0.9 

Λ2Μ3 6446.2 1.01 57.7 0.34 92.83 0.94 

Λ3Μ1 3494.29 0.55 99 0.24 130.61 1.32 

Λ3Μ2 8238.91 1.29 66 0.28 22.76 0.23 

Λ3Μ3 6543.47 1.02 66 0.28 33.26 0.34 
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Appendix B: Standardized residuals for 9 spread scenarios and 3 spatial scales.  
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Appendix C: Map comparison analysis results comparing estimated diffusion to the true 

diffusion used to simulate data.  

    Luminance Contrast Structure SSIM 

Λ1 

Μ1 0.951 0.881 0.899 0.754 

Μ2 0.231 0.739 0.890 -0.026 

Μ3 0.924 0.864 0.889 0.706 

Λ2 

Μ1 0.824 0.858 0.897 0.622 

Μ2 0.214 0.872 0.930 0.064 

Μ3 0.681 0.870 0.898 0.508 

Λ3 

Μ1 0.972 0.856 0.720 0.602 

Μ2 0.903 0.726 0.692 0.454 

Μ3 0.974 0.827 0.697 0.565 

 

 

 

 

 

 

 


