235 research outputs found
IGFBP-3 inhibits Wnt signaling in metastatic melanoma cells.
In previous works, we have shown that insulin-like growth factor-binding protein-3 (IGFBP-3), a tissue and circulating protein able to bind to IGFs, decreases drastically in the blood serum of patients with diffuse metastatic melanoma. In agreement with the clinical data, recombinant IGFBP-3 was found to inhibit the motility and invasiveness of cultured metastatic melanoma cells and to prevent growth of grafted melanomas in mice. The present work was aimed at identifying the signal transduction pathways underlying the anti-tumoral effects of IGFBP-3. We show that the anti-tumoral effect of IGFBP-3 is due to inhibition of the Wnt pathway and depends upon the presence of CD44, a receptor protein known to modulate Wnt signaling. Once it has entered the cell, IGFBP-3 binds the Wnt signalosome interacting specifically with its component GSK-3β. As a consequence, the β-catenin destruction complex dissociates from the LRP6 Wnt receptor and GSK-3β is activated through dephosphorylation, becoming free to target cytoplasmic β-catenin which is degraded by the proteasomal pathway. Altogether, the results suggest that IGFBP-3 is a novel and effective inhibitor of Wnt signaling. As IGFBP-3 is a physiological protein which has no detectable toxic effects either on cultured cells or live mice, it might qualify as an interesting new therapeutic agent in melanoma, and potentially many other cancers with a hyperactive Wnt signaling
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Autoantibodies against MHC class I polypeptide-related sequence A are associated with increased risk of concomitant autoimmune diseases in celiac patients
Background: Overexpression of autologous proteins can lead to the formation of autoantibodies and autoimmune diseases. MHC class I polypeptide-related sequence A (MICA) is highly expressed in the enterocytes of patients with celiac disease, which arises in response to gluten. The aim of this study was to investigate anti-MICA antibody formation in patients with celiac disease and its association with other autoimmune processes. Methods: We tested serum samples from 383 patients with celiac disease, obtained before they took up a gluten-free diet, 428 patients with diverse autoimmune diseases, and 200 controls for anti-MICA antibodies. All samples were also tested for anti-endomysium and anti-transglutaminase antibodies. Results: Antibodies against MICA were detected in samples from 41.7% of patients with celiac disease but in only 3.5% of those from controls (P <0.0001) and 8.2% from patients with autoimmune disease (P <0.0001). These antibodies disappeared after the instauration of a gluten-free diet. Anti-MICA antibodies were significantly prevalent in younger patients (P <0.01). Fifty-eight patients with celiac disease (15.1%) presented a concomitant autoimmune disease. Anti-MICA-positive patients had a higher risk of autoimmune disease than MICA antibody-negative patients (P <0.0001; odds ratio = 6.11). The risk was even higher when we also controlled for age (odds ratio = 11.69). Finally, we found that the associated risk of developing additional autoimmune diseases was 16 and 10 times as high in pediatric patients and adults with anti-MICA, respectively, as in those without. Conclusions: The development of anti-MICA antibodies could be related to a gluten-containing diet, and seems to be involved in the development of autoimmune diseases in patients with celiac disease, especially younger ones
The SPINK gene family and celiac disease susceptibility
The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n = 15) and diet-treated patients (n = 31) and controls (n = 16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population
Brain Structural Networks Associated with Intelligence and Visuomotor Ability
Increasing evidence indicates that multiple structures in the brain are associated with intelligence
and cognitive function at the network level. The association between the grey matter (GM) structural
network and intelligence and cognition is not well understood. We applied a multivariate approach
to identify the pattern of GM and link the structural network to intelligence and cognitive functions.
Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based
morphometry analysis was applied to the imaging data to extract GM structural covariance. We
assessed the intelligence, verbal fluency, processing speed, and executive functioning of the
participants and further investigated the correlations of the GM structural networks with intelligence
and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component
and the frontal component were significantly associated with intelligence. The parietal and frontal
regions were each distinctively associated with intelligence by maintaining structural networks with
the cerebellum and the temporal region, respectively. The cerebellar component was associated
with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by
demonstrating how each core region for intelligence works in concert with other regions. In addition,
we revealed how the cerebellum is associated with intelligence and cognitive functions
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion
Assessment of personal care and medical robots from older adults' perspective
Demographic reports indicate that population of older adults is growing significantly over the world and in particular in developed nations. Consequently, there are a noticeable number of demands for certain services such as health-care systems and assistive medical robots and devices. In today's world, different types of robots play substantial roles specifically in medical sector to facilitate human life, especially older adults. Assistive medical robots and devices are created in various designs to fulfill specific needs of older adults. Though medical robots are utilized widely by senior citizens, it is dramatic to find out into what extent assistive robots satisfy their needs and expectations. This paper reviews various assessments of assistive medical robots from older adults' perspectives with the purpose of identifying senior citizen's needs, expectations, and preferences. On the other hand, these kinds of assessments inform robot designers, developers, and programmers to come up with robots fulfilling elderly's needs while improving their life quality
Genetic Disruption of Both Tryptophan Hydroxylase Genes Dramatically Reduces Serotonin and Affects Behavior in Models Sensitive to Antidepressants
The neurotransmitter serotonin (5-HT) plays an important role in both the peripheral and central nervous systems. The biosynthesis of serotonin is regulated by two rate-limiting enzymes, tryptophan hydroxylase-1 and -2 (TPH1 and TPH2). We used a gene-targeting approach to generate mice with selective and complete elimination of the two known TPH isoforms. This resulted in dramatically reduced central 5-HT levels in Tph2 knockout (TPH2KO) and Tph1/Tph2 double knockout (DKO) mice; and substantially reduced peripheral 5-HT levels in DKO, but not TPH2KO mice. Therefore, differential expression of the two isoforms of TPH was reflected in corresponding depletion of 5-HT content in the brain and periphery. Surprisingly, despite the prominent and evolutionarily ancient role that 5-HT plays in both vertebrate and invertebrate physiology, none of these mutations resulted in an overt phenotype. TPH2KO and DKO mice were viable and normal in appearance. Behavioral alterations in assays with predictive validity for antidepressants were among the very few phenotypes uncovered. These behavioral changes were subtle in the TPH2KO mice; they were enhanced in the DKO mice. Herein, we confirm findings from prior descriptions of TPH1 knockout mice and present the first reported phenotypic evaluations of Tph2 and Tph1/Tph2 knockout mice. The behavioral effects observed in the TPH2 KO and DKO mice strongly confirm the role of 5-HT and its synthetic enzymes in the etiology and treatment of affective disorders
- …