88 research outputs found

    Targeting the Stress-Induced Protein NUPR1 to Treat Pancreatic Adenocarcinoma

    Get PDF
    Cancer cells activate stress-response mechanisms to adapt themselves to a variety of stressful conditions. Among these protective mechanisms, those controlled by the stress-induced nuclear protein 1 (NUPR1 ) belong to the most conserved ones. NUPR1 is an 82-residue-long, monomeric, basic and intrinsically disordered protein (IDP), which was found to be invariably overexpressed in some, if not all, cancer tissues. Remarkably, we and others have previously showed that genetic inactivation of the Nupr1 gene antagonizes the growth of pancreatic cancer as well as several other tumors. With the use of a multidisciplinary strategy by combining biophysical, biochemical, bioinformatic, and biological approaches, a trifluoperazine-derived compound, named ZZW-115, has been identified as an inhibitor of the NUPR1 functions. The anticancer activity of the ZZW-115 was first validated on a large panel of cancer cells. Furthermore, ZZW-115 produced a dose-dependent tumor regression of the tumor size in xenografted mice. Mechanistically, we have demonstrated that NUPR1 binds to several importins. Because ZZW-115 binds NUPR1 through the region around the amino acid Thr68, which is located into the nuclear location signal (NLS) region of the protein, we demonstrated that treatment with ZZW-115 inhibits completely the translocation of NUPR1 from the cytoplasm to the nucleus by competing with importins

    ZZW-115-dependent inhibition of NUPR1 nuclear translocation sensitizes cancer cells to genotoxic agents

    Get PDF
    Establishing the interactome of the cancer-associated stress protein Nuclear Protein 1 (NUPR1), we found that it binds to several hundreds of proteins, including proteins involved in nuclear translocation, DNA repair, and key factors of the SUMO pathway. We demonstrated that the NUPR1 inhibitor ZZW-115, an organic synthetic molecule, competes with importins for the binding to the NLS region of NUPR1, thereby inhibiting its nuclear translocation. We hypothesized, and then proved, that inhibition of NUPR1 by ZZW-115 sensitizes cancer cells to DNA damage induced by several genotoxic agents. Strikingly, we found that treatment with ZZW-115 reduced SUMOylation of several proteins involved in DNA damage response (DDR). We further report that the presence of recombinant NUPR1 improved the SUMOylation in a cell-free system, indicating that NUPR1 directly stimulates the SUMOylation machinery. We propose that ZZW-115 sensitizes cancer cells to genotoxic agents by inhibiting the nuclear translocation of NUPR1 and thereby decreasing the SUMOylation-dependent functions of key proteins involved in the DDR

    Analysis of KLF transcription factor family gene variants in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Krüppel-like factor (<it>KLF</it>) family consists of transcription factors that can activate or repress different genes implicated in processes such as differentiation, development, and cell cycle progression. Moreover, several of these proteins have been implicated in glucose homeostasis, making them candidate genes for involvement in type 2 diabetes (T2D).</p> <p>Methods</p> <p>Variants of nine <it>KLF </it>genes were genotyped in T2D cases and controls and analysed in a two-stage study. The first case-control set included 365 T2D patients with a strong family history of T2D and 363 normoglycemic individuals and the second set, 750 T2D patients and 741 normoglycemic individuals, all of French origin. The SNPs of six <it>KLF </it>genes were genotyped by Taqman<sup>® </sup>SNP Genotyping Assays. The other three <it>KLF </it>genes (KLF2, -15 and -16) were screened and the identified frequent variants of these genes were analysed in the case-control studies.</p> <p>Results</p> <p>Three of the 28 SNPs showed a trend to be associated with T2D in our first case-control set (P < 0.10). These SNPs, located in the <it>KLF2, KLF4 </it>and <it>KLF5 </it>gene were then analysed in our second replication set, but analysis of this set and the combined analysis of the three variants in all 2,219 individuals did not show an association with T2D in this French population. As the <it>KLF2</it>, -15 and -16 variants were representative for the genetic variability in these genes, we conclude they do not contribute to genetic susceptibility for T2D.</p> <p>Conclusion</p> <p>It is unlikely that variants in different members of the <it>KLF </it>gene family play a major role in T2D in the French population.</p

    Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties

    Get PDF
    The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs

    Glucocorticoid Effects on the Programming of AT1b Angiotensin Receptor Gene Methylation and Expression in the Rat

    Get PDF
    Adverse events in pregnancy may ‘programme’ offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11β-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence

    Proteomic Interrogation of Human Chromatin

    Get PDF
    Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the “Chromatome”) is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes

    Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells

    Get PDF
    Background: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results: Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1aα, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions: We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state

    HP1 Recruits Activity-Dependent Neuroprotective Protein to H3K9me3 Marked Pericentromeric Heterochromatin for Silencing of Major Satellite Repeats

    Get PDF
    H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription
    corecore