12 research outputs found

    High-Precision Spectroscopy of O 20 Benchmarking Ab Initio Calculations in Light Nuclei

    No full text
    : The excited states of unstable ^{20}O were investigated via Îł-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the Îł-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of Îł-ray transition probabilities with the valence space in medium similarity renormalization group ab initio calculations was performed for the first time in a nucleus far from stability. It was shown that the ab initio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the ab initio models

    High-Precision Spectroscopy of 20{20}O Benchmarking Ab Initio Calculations in Light Nuclei

    Get PDF
    International audienceHigh-precision spectroscopy of 20O benchmarking ab-initio calculations in light nucleiI. Zanon,1, 2 E. ClÂŽement,3 A. Goasduff,1 J. MenÂŽendez,4 T. Miyagi,5, 6, 7 M. AssiÂŽe,8 M. Ciemala,9F. Flavigny,10 A. Lemasson,3 A. Matta,10 D. Ramos,3 M. Rejmund,3 L. Achouri,10 D. Ackermann,3D. Barrientos,11 D. Beaumel,8 G. Benzoni,12 A.J. Boston,13 H.C. Boston,13 S. Bottoni,14, 12 A. Bracco,12, 14D. Brugnara,1, 15 G. de France,3 N. de Sereville,8 F. Delaunay,10 P. Desesquelles,8 F. Didierjean,16C. Domingo-Prato,17 J. Dudouet,18 J. Eberth,19 D. FernÂŽandez,20 C. Foug`eres,3 A. Gadea,17 F. Galtarossa,8V. Girard-Alcindor,3 V. Gonzales,21 A. Gottardo,1 F. Hammache,8 L.J. Harkness-Brennan,13 H. Hess,19D.S Judson,13 A. Jungclaus,22 A. Kažskažs,23 Y.H. Kim,24 A. Kužso˘glu,25 M. Labiche,26 S. Leblond,3C. Lenain,10 S.M. Lenzi,27 S. Leoni,12 H. Li,3 J. Ljungvall,8 J. Lois-Fuentes,20 A. Lopez-Martens,8A. Maj,28 R. Menegazzo,27 D. Mengoni,15, 27 C. Michelagnoli,3, 24 B. Million,12 D.R. Napoli,1 J. Nyberg,29G. Pasqualato,15, 27 Zs. Podolyak,30 A. Pullia,12 B. Quintana,31 F.Recchia,15, 27 D. Regueira-Castro,20 P. Reiter,19K. Rezynkina,32 J.S. Rojo,33 M.D. Salsac,34 E. Sanchis,21 M. Sženyi˘git,23 M. Siciliano,34, 35 D. Sohler,36O. Stezowski,18 Ch. Theisen,34 A. Utepov,3, 10 J.J. Valiente-DobÂŽon,1 D. Verney,8 and M. Zielinska341INFN Laboratori Nazionali di Legnaro, Legnaro, Italy.2Dipartimento di Fisica e Scienze della Terra, Universit`a di Ferrara, Ferrara, Italy.3Grand AccÂŽelÂŽerateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France4Department of Quantum Physics and Astrophysics and Institute of Cosmos Sciences, University of Barcelona, Spain5Technische Universitšat Darmstadt, Department of Physics, Darmstadt, Germany6ExtreMe Matter Institute, GSI Helmholtzzentrum fšur Schwerionenforschung GmbH, Darmstadt, Germany7Max-Planck-Institut fšur Kernphysik, Heidelberg, Germany8UniversitÂŽe Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France9IFJ PAN, Krakow, Poland.10UniversitÂŽe de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France.11CERN, CH-1211 Geneva 23, Switzerland12INFN Sezione di Milano, I-20133 Milano, Italy13Oliver Lodge Laboratory, The University of Liverpool, Liverpool, UK.14Dipartimento di Fisica, Universit`a di Milano, Milano, Italy15Dipartimento di Fisica, Universit`a di Padova, Padova, Italy.16UniversitÂŽe de Strasbourg, IPHC, Strasbourg, France.17Instituto de Fisica Corpuscolar, CSIC-Universidad de Valencia, E-46071 Valencia, Spain.18UniversitÂŽe de Lyon, UniversitÂŽe Lyon-1, CNRS/IN2P3,UMR5822, IP2I, F-69622 Villeurbanne Cedex, France19Institut fšur Kernphysik, Universitšat zu Kšoln, Zšulpicher Str. 77, D-50937 Kšoln, Germany20IGFAE and Dpt. de FŽısica de PartŽıculas, Univ. of Santiago de Compostela, Santiago de Compostela, Spain21Departamento de IngenierŽıa ElectrÂŽonica, Universitat de Valencia, Burjassot, Valencia, Spain22Instituto de Estructura de la Materia, CSIC, Madrid, E-28006 Madrid, Spain23Department of Physics, Faculty of Science, Ankara University, 06100 Besevler - Ankara, Turkey24Institue Laue-Langevin, Grenoble, France.25Department of Physics, Faculty of Science, Istanbul University, Vezneciler/Fatih, Istanbul, Turkey.26STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK27INFN, Sezione di Padova, I-35131 Padova, Italy.28The Henryk NiewodniczaÂŽnski Institute of Nuclear Physics,Polish Academy of Sciences, 31-342 KrakÂŽow, Poland29Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden30Department of Physics, University of Surrey, Guildford, GU2 7XH, UK31Laboratorio de Radiaciones Ionizantes, Departamento de FŽısica Fundamental,Universidad de Salamanca, E-37008 Salamanca, Spain32UniversitÂŽe de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France33Department of Physics, University of York, York, UK.34Irfu, CEA, UniversitÂŽe Paris-Saclay, F-91191 Gif-sur-Yvette, France35Physics Division, Argonne National Laboratory, Lemont (IL) 60439, United States.36Institute for Nuclear Research, Atomki, 4001 Debrecen, HungaryThe excited states of unstable 20O were investigated via Îł-ray spectroscopy following the19O(d, p)20O reaction at 8 AMeV. By exploiting the Doppler Shift Attenuation Method, the lifetimeof the 2+2 and 3+1 states were firmly established. From the Îł-ray branching and E2/M1 mixing ratiosfor transitions deexciting the 2+2 and 3+1 states, the B(E2) and B(M1) were determined. Variouschiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states,along with a standard USDB interaction, were compared with the experimentally obtained data.Such a comparison for a large set of Îł-ray transition probabilities with the valence space in medium 2similarity renormalization group ab-initio calculations was performed for the first time in a nucleusfar from stability. It was shown that the ab-initio approaches using chiral EFT forces are challengedby detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilitieswere found to be a very constraining test of the performance of the ab-initio model

    High-Precision Spectroscopy of 20{20}O Benchmarking Ab Initio Calculations in Light Nuclei

    No full text
    International audienceHigh-precision spectroscopy of 20O benchmarking ab-initio calculations in light nucleiI. Zanon,1, 2 E. ClÂŽement,3 A. Goasduff,1 J. MenÂŽendez,4 T. Miyagi,5, 6, 7 M. AssiÂŽe,8 M. Ciemala,9F. Flavigny,10 A. Lemasson,3 A. Matta,10 D. Ramos,3 M. Rejmund,3 L. Achouri,10 D. Ackermann,3D. Barrientos,11 D. Beaumel,8 G. Benzoni,12 A.J. Boston,13 H.C. Boston,13 S. Bottoni,14, 12 A. Bracco,12, 14D. Brugnara,1, 15 G. de France,3 N. de Sereville,8 F. Delaunay,10 P. Desesquelles,8 F. Didierjean,16C. Domingo-Prato,17 J. Dudouet,18 J. Eberth,19 D. FernÂŽandez,20 C. Foug`eres,3 A. Gadea,17 F. Galtarossa,8V. Girard-Alcindor,3 V. Gonzales,21 A. Gottardo,1 F. Hammache,8 L.J. Harkness-Brennan,13 H. Hess,19D.S Judson,13 A. Jungclaus,22 A. Kažskažs,23 Y.H. Kim,24 A. Kužso˘glu,25 M. Labiche,26 S. Leblond,3C. Lenain,10 S.M. Lenzi,27 S. Leoni,12 H. Li,3 J. Ljungvall,8 J. Lois-Fuentes,20 A. Lopez-Martens,8A. Maj,28 R. Menegazzo,27 D. Mengoni,15, 27 C. Michelagnoli,3, 24 B. Million,12 D.R. Napoli,1 J. Nyberg,29G. Pasqualato,15, 27 Zs. Podolyak,30 A. Pullia,12 B. Quintana,31 F.Recchia,15, 27 D. Regueira-Castro,20 P. Reiter,19K. Rezynkina,32 J.S. Rojo,33 M.D. Salsac,34 E. Sanchis,21 M. Sženyi˘git,23 M. Siciliano,34, 35 D. Sohler,36O. Stezowski,18 Ch. Theisen,34 A. Utepov,3, 10 J.J. Valiente-DobÂŽon,1 D. Verney,8 and M. Zielinska341INFN Laboratori Nazionali di Legnaro, Legnaro, Italy.2Dipartimento di Fisica e Scienze della Terra, Universit`a di Ferrara, Ferrara, Italy.3Grand AccÂŽelÂŽerateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France4Department of Quantum Physics and Astrophysics and Institute of Cosmos Sciences, University of Barcelona, Spain5Technische Universitšat Darmstadt, Department of Physics, Darmstadt, Germany6ExtreMe Matter Institute, GSI Helmholtzzentrum fšur Schwerionenforschung GmbH, Darmstadt, Germany7Max-Planck-Institut fšur Kernphysik, Heidelberg, Germany8UniversitÂŽe Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France9IFJ PAN, Krakow, Poland.10UniversitÂŽe de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France.11CERN, CH-1211 Geneva 23, Switzerland12INFN Sezione di Milano, I-20133 Milano, Italy13Oliver Lodge Laboratory, The University of Liverpool, Liverpool, UK.14Dipartimento di Fisica, Universit`a di Milano, Milano, Italy15Dipartimento di Fisica, Universit`a di Padova, Padova, Italy.16UniversitÂŽe de Strasbourg, IPHC, Strasbourg, France.17Instituto de Fisica Corpuscolar, CSIC-Universidad de Valencia, E-46071 Valencia, Spain.18UniversitÂŽe de Lyon, UniversitÂŽe Lyon-1, CNRS/IN2P3,UMR5822, IP2I, F-69622 Villeurbanne Cedex, France19Institut fšur Kernphysik, Universitšat zu Kšoln, Zšulpicher Str. 77, D-50937 Kšoln, Germany20IGFAE and Dpt. de FŽısica de PartŽıculas, Univ. of Santiago de Compostela, Santiago de Compostela, Spain21Departamento de IngenierŽıa ElectrÂŽonica, Universitat de Valencia, Burjassot, Valencia, Spain22Instituto de Estructura de la Materia, CSIC, Madrid, E-28006 Madrid, Spain23Department of Physics, Faculty of Science, Ankara University, 06100 Besevler - Ankara, Turkey24Institue Laue-Langevin, Grenoble, France.25Department of Physics, Faculty of Science, Istanbul University, Vezneciler/Fatih, Istanbul, Turkey.26STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK27INFN, Sezione di Padova, I-35131 Padova, Italy.28The Henryk NiewodniczaÂŽnski Institute of Nuclear Physics,Polish Academy of Sciences, 31-342 KrakÂŽow, Poland29Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden30Department of Physics, University of Surrey, Guildford, GU2 7XH, UK31Laboratorio de Radiaciones Ionizantes, Departamento de FŽısica Fundamental,Universidad de Salamanca, E-37008 Salamanca, Spain32UniversitÂŽe de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France33Department of Physics, University of York, York, UK.34Irfu, CEA, UniversitÂŽe Paris-Saclay, F-91191 Gif-sur-Yvette, France35Physics Division, Argonne National Laboratory, Lemont (IL) 60439, United States.36Institute for Nuclear Research, Atomki, 4001 Debrecen, HungaryThe excited states of unstable 20O were investigated via Îł-ray spectroscopy following the19O(d, p)20O reaction at 8 AMeV. By exploiting the Doppler Shift Attenuation Method, the lifetimeof the 2+2 and 3+1 states were firmly established. From the Îł-ray branching and E2/M1 mixing ratiosfor transitions deexciting the 2+2 and 3+1 states, the B(E2) and B(M1) were determined. Variouschiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states,along with a standard USDB interaction, were compared with the experimentally obtained data.Such a comparison for a large set of Îł-ray transition probabilities with the valence space in medium 2similarity renormalization group ab-initio calculations was performed for the first time in a nucleusfar from stability. It was shown that the ab-initio approaches using chiral EFT forces are challengedby detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilitieswere found to be a very constraining test of the performance of the ab-initio model

    Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone

    No full text

    LHCb computing: Technical Design Report

    Get PDF

    1996 Annual Selected Bibliography

    No full text

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore