84 research outputs found

    Pulsed electric fields to improve the use of non-saccharomyces starters in red wines

    Get PDF
    New nonthermal technologies, including pulsed electric fields (PEF), open a new way to generate more natural foods while respecting their organoleptic qualities. PEF can reduce wild yeasts to improve the implantation of other yeasts and generate more desired metabolites. Two PEF treatments were applied; one with an intensity of 5 kV/cm was applied continuously to the must for further colour extraction, and a second treatment only to the must (without skins) after a 24-hour maceration of 17.5 kV/cm intensity, reducing its wild yeast load by up to 2 log CFU/mL, thus comparing the implantation and fermentation of inoculated non-Saccharomyces yeasts. In general, those treated with PEF preserved more total esters and formed more anthocyanins, including vitisin A, due to better implantation of the inoculated yeasts. It should be noted that the yeast Lachancea thermotolerans that had received PEF treatment produced four-fold more lactic acid (3.62 ± 0.84 g/L) than the control of the same yeast, and Hanseniaspora vineae with PEF produced almost three-fold more 2-phenylethyl acetate than the rest. On the other hand, 3-ethoxy-1-propanol was not observed at the end of the fermentation with a Torulaspora delbrueckii (Td) control but in the Td PEF, it was observed (3.17 ± 0.58 mg/L)

    Empleo de fermentaciones secuenciales con levaduras no-Saccharomyces y aplicación de bloqueadores metabólicos para reducir el grado alcohólico en vinos

    Get PDF
    La combinación secuencial de especies no-Saccharomyces y Saccharomyces durante la fermentación y la adición de bloqueadores metabólicos como el furfural, o-vainillina, glicolaldehído y p-benzoquinona pueden resultar unas técnicas de vinificación interesantes para reducir el grado alcohólico del vino. El grado alcohólico se determinó por HPLC-IR y los azúcares residuales mediante tests enzimáticos. Las cepas de levadura 7013 (Torulaspora delbrueckii) y 938 (Schizosaccharomyces pombe) destacaron por su capacidad para reducir significativamente el grado alcohólico (reducción media del 2.1 % v/v) dando lugar a un vino seco (azúcares menor que 1.5 gl-1) en fermentación secuencial con la 7VA (Saccharomyces cerevisiae). La o-vainillina permitió una disminución en el contenido de etanol del 0.54 % v/v a dosis de 50 mg l-1, mientras que el efecto bloqueador del glicolaldehído fue más efectivo a la dosis de 200 mg l-1 con una reducción del 0.95 % v/v. Finalmente con la p-benzoquinona se logró una reducción en el grado alcohólico de hasta 0.85 % v/v

    Selección Saccharomyces cerevisiae con baja producción de etanol para control del grado alcohólico en zonas cálidas

    Get PDF
    En la enología española existen muchas regiones en las que el clima favorece maduraciones sacarimétricas excesivas lo que supone que durante la fermentación se alcancen grados alcohólicos elevados. La levadura metaboliza el azúcar (glucosa y fructosa) por vía fermentativa produciendo como productos mayoritarios etanol y CO2. Sin embargo, no todas las levaduras alcanzan el mismo grado alcohólico para un mosto con una concentración de azúcares igual. Normalmente las variaciones son pequeñas y se relacionan con desviaciones del metabolismo glicolítico hacia otras moléculas que pueden ser interesantes desde el punto de vista sensorial (Figura 1). Este tipo de levaduras permiten controlar el grado alcohólico excesivo a la vez que pueden favorecer la formación de metabolitos que incrementen la complejidad sensorial de los vinos. En este trabajo se han estudiado 25 levaduras seleccionadas para la elaboración de vinos tintos en distintas DOs españolas para evaluar su eficiencia glicolítica y por tanto el grado alcohólico alcanzado por cantidad de azúcar metabolizada para seleccionar levaduras que permitan reducir el grado alcohólico

    Influence of sequential and mixed fermentations with non-Saccharomyces yeasts on the sensory profile of red wine

    Full text link
    The aim of this work is to evaluate the influence of S. pombe and T. delbrueckii species on the sensory quality of red wine when used in sequential and mixed fermentations with S. cerevisiae

    Distance of the alveolar antral artery from the alveolar crest. Related factors and surgical considerations in sinus floor elevation

    Get PDF
    In a variable proportion of maxillary sinuses alveolar antral artery is located close to the residual ridge, increasing the chances for haemorrhagic complications during sinus floor elevation procedures. Retrospective observational study of CBCT explorations performed for implant-treatment planning. The upper first molar area was selected for this study. The relative uncertainty (standard deviation of the measurement divided by its mean and expressed as a percentage from 0% to 100%) was chosen for determining the observational errors. For modeling the chances of AAA detection, the generalized additive models (GAM) approach was chosen. A total of 240 maxillary sinuses were studied (46.25% males) whose median median age was 58 years old (IQR: 52-66). Univariate models showed that the chances for an AAA-alvelar crest distance ?15mm increase in wider sinuses with lower, subsinusally edentulous crests. When distance is considered as a continuous variable, the best mutivariate model showed an explained deviance of 67% and included AAA diameter, distance AAA-sinus floor, sinus width, and shape, height and width of the residual ridge. Thinner AAAs are found closer to the crest (within the ?15mm safe distance). Bearing in mind the inclusion criteria and the limitations of this investigation, it is concluded that there is a high proportion of maxillary sinuses where AAA describes a course close to the alveolar crest (?15mm), which was classically considered a safe distance for SFE. This position is related to the presence of atrophic crests (depressed ridge form) and wide maxillary sinuses where the distance of the vessel to the floor of the sinus is small. This information may permit a better surgical planning of SFE procedures

    Polymeric pigments formed in sequential fermentation of red fresh musts by adding flavan-3-ols

    Get PDF
    Red wine pigments are susceptible to degradation by light, SO2 and changes in pH and temperature1,2. The formation of pyranoanthocyanins and polymeric pigments during fermentation and wine aging promote the stability of such pigments3. Glycolytic metabolites (e.g. acetaldehyde and pyruvic acid) may interact with anthocyanins and flavan-3-ols to form more stable molecules4 without a drastic change in hue values. Procyanidins are molecules from the flavanoids family that may condense with anthocyanins5. The contribution of non-Saccharomyces yeasts (e.g. L. thermotolerans, M. pulcherrima and T. delbrueckii), in sequential fermentation with S. cerevisiae and S. pombe, to the production of stable pigments was assessed in this project. with the use of HPLC-DAD/MS-ESI. The red musts have been enriched with flavanols prior fermentation. Fermentative volatiles and sensorial analysis were also performed to characterize experimental wines produced

    Use of Schizosaccharomyces pombe to produce stable pigments during red winemaking

    Full text link
    This work has studied the production of stable pyranoanthocyanin pigments during fermentation using S. pombe and Saccharomyces cerevisiae. Along the fermentation, anthocyanins were determined by HPLC-DAD/MS, acetaldehyde was measured using GC-FID and pyruvic acid was quantified by enzymatic tests. Results show that S. pombe strains produce higher amounts of pyruvic acid, and therefore also of vitisin A, than Saccharomyces controls

    Study of factors influencing preoperative detection of alveolar antral artery by CBCT in sinus floor elevation

    Get PDF
    This study aimed at assessing the prevalence of alveolar antral artery (AAA) detection by CBCT, its related variables, and at describing explanatory models useful in surgical planning, by retrospective evaluation of CBCT explorations. The modelling of the probability for detecting AAA was undertaken using logistic generalized additive models (GAM). The capacity for discriminating detection/no detection was assessed by receiver operating characteristic curves. A total of 466 sinuses were studied. Univariate models showed detection probability was linked to sinus width and thickness of the lateral bony wall, together with the shape and height of the osseous crest. AAA detection probability increased steadily until the thickness of the bony wall reached 6 mm. Multivariate models resulted good discriminators for AAA detection, particularly for females, showing an area under the curve (AUC) of 0.85. Models considering patients altogether, and those including only males offered slightly lower values (AUC = 0.79). The probability of AAA detection by CBCT was influenced by gender (higher in males and for narrow sinuses) and increases with the thickness of the sinus lateral bony wall and the height of the residual alveolar ridge. Besides, and particularly for women, the thickness of the ridge at the basal level seems to improve the explanatory model for AAA detection

    Processing of grapes by high hydrostatic pressure. Influence on wine quality

    Full text link
    The aim of this work is to evaluate the influence of S. pombe and T. delbrueckii species on the sensory quality of red wine when used in sequential and mixed fermentations with S. cerevisiae

    Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    Get PDF
    International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system
    corecore