10 research outputs found

    BarkBase: Epigenomic Annotation of Canine Genomes

    Get PDF
    Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans

    Advancing Genetic Selection and Behavioral Genomics of Working Dogs Through Collaborative Science

    Get PDF
    The ancient partnership between people and dogs is struggling to meet modern day needs, with demand exceeding our capacity to safely breed high-performing and healthy dogs. New statistical genetic approaches and genomic technology have the potential to revolutionize dog breeding, by transitioning from problematic phenotypic selection to methods that can preserve genetic diversity while increasing the proportion of successful dogs. To fully utilize this technology will require ultra large datasets, with hundreds of thousands of dogs. Today, dog breeders struggle to apply even the tools available now, stymied by the need for sophisticated data storage infrastructure and expertise in statistical genetics. Here, we review recent advances in animal breeding, and how a new approach to dog breeding would address the needs of working dog breeders today while also providing them with a path to realizing the next generation of technology. We provide a step-by-step guide for dog breeders to start implementing estimated breeding value selection in their programs now, and we describe how genotyping and DNA sequencing data, as it becomes more widely available, can be integrated into this approach. Finally, we call for data sharing among dog breeding programs as a path to achieving a future that can benefit all dogs, and their human partners too

    National Register Testing At Sites 41BP585, 41BP594, And 41BP595 Three Oaks Mine, Bastrop County, Texas

    Get PDF
    Between October 2012 and July 2013, Atkins conducted National Register of Historic Places (NRHP) eligibility testing at historic sites 41BP585 and 41BP594 and prehistoric site 41BP595, located within the Three Oaks Mine in Bastrop County, Texas, which is owned and operated by Luminant. Impacts to all three sites are anticipated as a result of planned mine development. This work was conducted under the direction of Principal Investigator David L. Sherman. This report of investigations was written at Atkins and is being finalized by Blanton & Associates, with David L. Sherman remaining as the Principal Investigator. This work demonstrated that significant archeological deposits that may contribute to the overall NRHP eligibility statuses of the two historic sites are absent at both sites. Standing architecture at 41BP594, however, has previously been determined to be eligible for listing on the NRHP (Martin 2001). Archival research conducted as part of the current investigation into the histories of the historic sites remains inconclusive with respect to the identity of their 1870s and earlier occupants. Testing at prehistoric site 41BP595 indicated it resulted from multiple occupational episodes during the period from the late Paleoindian to the Late Prehistoric. Shovel testing and mechanical trenching revealed the presence of an expansive buried anthrogenic A soil horizon, or midden, replete with preserved subsistence remains. Mechanical trenching also exposed a variety of burned rock cooking facilities partially surrounding the midden area. Radiocarbon assays of burned nut shells recovered from feature contexts, along with the assemblage of diagnostic lithic artifacts, suggest the site was most intensively occupied from the Late Archaic to the early Late Prehistoric. A suite of special studies was conducted on burned rock samples recovered from four of the better-preserved burned rock features. These studies, which include residue, starch, and phytolith analysis, suggest that the burned rock features were used in part to process tubers/roots and grass seeds for subsistence. Macrobotanical analysis of flotation samples recovered from feature contexts identified spent fuel remains including oak and hickory wood and subsistence remains including oak, hickory, black walnut, and acorn burned nut shells. A small amount of burned bulb, possibly representing wild onion, was also recovered through flotation. These findings suggest that significant archeological deposits important to understanding the Late Archaic to early Late Prehistoric period have been preserved at 41BP595

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    BarkBase : Epigenomic Annotation of Canine Genomes

    Get PDF
    Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans

    LCS 220 A: Creativity and the Arts Spring 2022

    Get PDF
    Creativity is vital to achievement in many fields, from science, to business and the arts. This course will explore creativity both as a general process of engagement with the world around us and as an introduction to creative cultural expression in the Arts. It will engage students in thinking about creativity as an intrinsic part of their educational, personal and professional lives, as it engages them in creative practice and reflection upon creative process. As part of the class, students collaborated and created a zine.https://digitalcommons.bryant.edu/zine/1007/thumbnail.jp

    BarkBase : Epigenomic Annotation of Canine Genomes

    No full text
    Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans
    corecore