27 research outputs found
BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers.
Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin. Melanosomes and other lysosome-related organelles obtain cargoes from early endosomes, but the fusion machinery involved and its recycling pathway are unknown. Here, we show that the v-SNARE VAMP7 mediates fusion of melanosomes with tubular transport carriers that also carry the cargo protein TYRP1 and that require BLOC-1 for their formation. Using live-cell imaging, we identify a pathway for VAMP7 recycling from melanosomes that employs distinct tubular carriers. The recycling carriers also harbor the VAMP7-binding scaffold protein VARP and the tissue-restricted Rab GTPase RAB38. Recycling carrier formation is dependent on the RAB38 exchange factor BLOC-3. Our data suggest that VAMP7 mediates fusion of BLOC-1-dependent transport carriers with melanosomes, illuminate SNARE recycling from melanosomes as a critical BLOC-3-dependent step, and likely explain the distinct hypopigmentation phenotypes associated with BLOC-1 and BLOC-3 deficiency in Hermansky-Pudlak syndrome variants.This work was supported by grants from the National Institutes of Health, National Eye Institute (R01 EY015625, to M.S. Marks and G. Raposo), National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR048155, to M.S. Marks, and F32 AR062476, to M.K. Dennis), National Institute of General Medical Sciences (R01 GM108807, to M.S. Marks); Fondation pour la Recherche Médicale (to T. Galli); the UK Medical Research Council (G0900113, to J.P. Luzio); and the Wellcome Trust (108429, to E.V. Sviderskaya and D.C. Bennett). This work was also supported by a Canadian Institutes of Health Research Fellowship (to G.G. Hesketh) and a Fondation pour la Recherche Médicale grant from Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Curie, and Fondation pour la Recherche Médicale (DEQ20140329491 Team label, to G. Raposo).This is the final version of the article. It first appeared from Rockefeller University Press via http://dx.doi.org/10.1083/jcb.20160509
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Mycobacterial lineages causing pulmonary and extrapulmonary Tuberculosis, Ethiopia
Molecular typing of 964 specimens from patients in Ethiopia with lymph node or pulmonary tuberculosis showed a similar distribution of Mycobacterium tuberculosis strains between the 2 disease manifestations and a minimal role for M. bovis. We report a novel phylogenetic lineage of M. tuberculosis strongly associated with the Horn of Africa
Familial imbalance in 16p13.11 leads to a dosage compensation rearrangement in an unaffected carrier
The role of centralized reading of endoscopy in a randomized controlled trial of mesalamine for ulcerative colitis
Background & Aims: Interobserver differences in endoscopic assessments contribute to variations in rates of response to placebo in ulcerative colitis (UC) trials. We investigated whether centralized review of images could reduce these variations. Methods: We performed a 10-week, randomized, double-blind, placebo-controlled study of 281 patients with mildly to moderately active UC, defined by an Ulcerative Colitis Disease Activity Index (UCDAI) sigmoidoscopy score ≥2, that evaluated the efficacy of delayed-release mesalamine (Asacol 800-mg tablet) 4.8 g/day. Endoscopic images were reviewed by a single expert central reader. The primary outcome was clinical remission (UCDAI, stool frequency and bleeding scores of 0, and no fecal urgency) at week 6. Results: The primary outcome was achieved by 30.0% of patients treated with mesalamine and 20.6% of those given placebo, a difference of 9.4% (95% confidence interval [CI], -0.7% to 19.4%; P =.069). Significant differences in results from secondary analyses indicated the efficacy of mesalamine. Thirty-one percent of participants, all of whom had a UCDAI sigmoidoscopy score ≥2 as read by the site investigator, were considered ineligible by the central reader. After exclusion of these patients, the remission rates were 29.0% and 13.8% in the mesalamine and placebo groups, respectively (difference of 15%; 95% CI, 3.5%-26.0%; P =.011). Conclusions: Although mesalamine 4.8 g/day was not statistically different from placebo for induction of remission in patients with mildly to moderately active UC, based on an intent-to-treat analysis, the totality of the data supports a benefit of treatment. Central review of endoscopic images is critical to the conduct of induction studies in UC; ClinicalTrials.gov Number, NCT01059344. © 2013 by the AGA Institute