24 research outputs found

    Seeing the Threat: Pilot Visual Detection of Small Unmanned Aircraft Systems in Visual Meteorological Conditions

    Get PDF
    One key challenge of integrating Unmanned Aircraft Systems (UAS) platforms into the National Airspace System (NAS) is the potential for midair collisions between manned aircraft and the unmanned system. The lack of an established UAS benchmark for Detect, Sense & Avoid Systems put the preponderance of avoidance efforts on manned aircraft pilots to visually see and avoid potential collision threats. The small size, unusual configurations, and diverse operational applications of unmanned systems make UAS platforms difficult to visually identify. This paper sought to determine the mean visibility distance of small UAS systems (sUAS) to an alerted pilot flying a general aviation aircraft in visual meteorological conditions (VMC). The study evaluated mean visibility distance to various sUAS platforms based on a scripted set of UAS convergence conditions. The study utilized a mixed method design in which a general aviation aircraft was flown into a UAS operations area. Study pilots were instructed to locate a flying UAS aircraft without bearing assistance. Both the UAS and manned aircraft were assigned vertically de-conflicted altitudes with the UAS aircraft executing a series of converging and crossing courses relative to the manned aircraft. The distance at which the pilot visually located the UAS platform was timestamped and electronically recorded via a GPS tracking device. The various conditions were analyzed to determine significant visibility differences among the various convergence conditions. Qualitative data was collected from participant comments and observations recorded by an in-flight safety observer

    Pilot Visual Detection of Small Unmanned Aircraft on Final Approach during Nighttime Conditions

    Get PDF
    In December 2020, the Federal Aviation Administration (FAA) announced the release of a new final rule, permitting operators of small unmanned aircraft systems (sUAS) to perform routine night operations. Public comments to the Notice of Proposed Rulemaking indicated potential safety concerns regarding a pilot’s ability to spot a low-altitude sUAS during nighttime conditions. Leveraging data from the FAA’s UAS Sighting Report Database, the research team evaluated the significance of aircraft encounters with UAS at night. Researchers conducted an inflight experiment in which 10 pilots performed an instrument approach to airport during nighttime conditions in which a multi-rotor sUAS presented a potential collision hazard. The sUAS was equipped with lighting visible for 3 miles with a sufficient flash rate to avoid a collision, as specified by the new regulation. Participants performed five approaches, with the sUAS flying different scripted encounter profiles. Participants were asked to indicate when they visually spotted the sUAS, with sighting data recorded via an onboard observer. Geolocation information from both the aircraft and sUAS were compared at the time of each reported sighting to assess visibility distance and orientation. The sUAS was successfully spotted during 30 percent (n = 12) of the testing passes. Hovering sUAS were spotted at the same rate as moving sUAS, however, sUAS in motion were spotted at a much greater range. Researchers noted disproportionately higher spotting rates occurred when the sUAS was oriented on the starboard side of the aircraft vs. the port side. It is believed that airport lighting systems may have obscured or otherwise camouflaged portside sUAS encounters. When asked to estimate distance to an encountered sUAS, most participants underestimated, perceiving the sUAS to be much closer than reality. Additionally, the researchers assessed the potential for the participants to initiate evasive maneuvers, based on the distance and closure rate of the aircraft and sUAS at the time of sighting. Based on the FAA’s Aircraft Identification and Reaction Time Chart, collision avoidance would only have been successful during 15 percent of encounters (n = 6). The research team recommends Remote Pilots employ vigilant traffic awareness during nighttime operations, and leverage use of ADS-B (In) technology and monitor Common Traffic Advisory Frequencies to maintain situational awareness—particularly when operating in proximity to airports

    Pilot Visual Detection of Small Unmanned Aircraft Systems (sUAS) Equipped with Strobe Lighting

    Get PDF
    When operating under Visual Flight Rules, pilots primarily rely on visual scanning to avoid other aircraft and airborne collision threats. Records from the Federal Aviation Administration indicate that near encounters with unmanned aircraft are on the rise, reaching 1,761 reported unmanned aircraft system (UAS) sightings or near-misses in 2016. This study sought to assess the effectiveness of pilot visual detection of UAS platforms that were equipped with strobe lighting. A sample of 10 pilots flew a general aviation aircraft on a scripted series of five intercepts with a small UAS (sUAS) that was equipped with strobe lighting. Participants were asked to indicate when they visually detected the unmanned aircraft. Geolocation information for both the aircraft and sUAS platform was compared to assess visibility distance. Findings were used to evaluate the efficacy of daytime strobe lighting as a method to enhance pilot sUAS detection, visibility, and collision avoidance. Participants detected the unmanned aircraft during 7.7% of the intercepts. Due to a lack of data points, the authors were unable to conclusively determine if strobe lighting improved UAS visual detection. The authors recommend further research to explore the effectiveness of using sUAS-mounted strobe lights for nighttime visual detection

    Detecting and Assessing Collision Potential of Aircraft and Small Unmanned Aircraft Systems (sUAS) by Visual Observers

    Get PDF
    Visual observers are used to assist the Remote Pilot with maintaining sight of the unmanned aircraft as well as scanning the surrounding airspace for potential collision hazards. The purpose of this study was to examine the effectiveness of visual observers in detecting an intruding general aviation aircraft approaching the small unmanned aircraft system (sUAS) operations area. The study sought to determine the effectiveness of sUAS visual observers in detecting a general aviation aircraft collision hazard with a sUAS. Ten participants were asked to perform visual observer duties in support of a sUAS operation. Participants were asked to indicate when they were able to hear and see an aircraft that conducted a scripted series of close intercepts with a sUAS. Additionally, researchers assessed each visual observer’s ability to accurately judge the closure rate of the aircraft, by estimating the duration from initial sighting until the aircraft would intercept the airborne sUAS platform. Geolocation data from both the aircraft and sUAS were time correlated and compared to determine estimation accuracy. Findings were used to formulate operational recommendations to improve visual observer performance in detecting and assessing intruder aircraft collision potential

    Cleared to Land: Pilot Visual Detection of Small Unmanned Aircraft During Final Approach

    Get PDF
    Sighting reports of unmanned aircraft systems (UAS) by pilots, air traffic controllers, and other aviation stakeholders have continued to rise since the Federal Aviation Administration (FAA) began tracking in 2014. In 2018, the FAA received 2,307 such reports, with 22.8% (n = 526) occurring during the final approach phase of flight. The threat of a midair collision between a manned aircraft and UAS is heightened during the final approach phase of flight, as the aircraft transitions from higher-altitude airspace to the low-altitude arena, now shared with drones. Absent UAS sense and avoid systems, pilots are forced to rely on visual senses and scanning techniques to ensure the approach path remains clear of UAS incursions. This research evaluated the effectiveness of pilot visual detection of a multirotor UAS during five approach to landing scenarios in which an unmanned aircraft created an incursion into the approach path. During the scripted approach scenarios, the UAS either remained stationary or maneuvered laterally. Both aircraft and UAS were separated by established vertical safety margins and protocols to avoid an actual collision. Overall, participants detected the UAS during 30% of the approaches. The static UAS was only detected during 13.6% of the approaches, at a mean range of 647 ft. The detection rate improved to 50% when the drone was in motion, with a mean detection range of 1,593 ft. Vector data was calculated to determine the detection angle of UAS sightings, with the majority of successful detections occurring within 5˚ laterally and 10˚ vertically of center. Qualitative comments were solicited from the participants and evaluated for trends. Forty percent of the participants indicated that moving UAS are easier to spot. Other trends related to UAS contrast, object misidentification, and detection aspect angle were also identified by the participants. The authors emphasized that based on the recorded detection distance, pilots would only have a limited margin of error to successfully execute evasive maneuvers, based on the FAA’s Recommended Minimum Reaction Time Required for Evasion criteria. Full-text will be available October 30, 2019 at approximately 10:00 AM Eastern

    Cleaning the Label of Cured Meat; Effect of the Replacement of Nitrates/Nitrites on Nutrients Bioaccessibility, Peptides Formation, and Cellular Toxicity of In Vitro Digested Salami

    Get PDF
    Curing salts composed of mixtures of nitrates and nitrites are preservatives widely used in processed meats. Despite many desirable technological effects, their use in meat products has been linked to methemoglobinemia and the formation of nitrosamines. Therefore, an increasing "anti-nitrite feeling" has grown among meat consumers, who search for clean label products. In this view, the use of natural compounds as alternatives represents a challenge for the meat industry. Processing (including formulation and fermentation) induces chemical or physical changes of food matrix that can modify the bioaccessibility of nutrients and the formation of peptides, impacting on the real nutritional value of food. In this study we investigated the effect of nitrate/nitrite replacement with a combination of polyphenols, ascorbate, and nitrate-reducing microbial starter cultures on the bioaccessibility of fatty acids, the hydrolysis of proteins and the release of bioactive peptides after in vitro digestion. Moreover, digested salami formulations were investigated for their impacts on cell proliferation and genotoxicity in the human intestinal cellular model (HT-29 cell line). The results indicated that a replacement of synthetic nitrates/nitrites with natural additives can represent a promising strategy to develop innovative "clean label" salamis without negatively affecting their nutritional value

    BLOG LITERÁRIO: : O uso da tecnologia digital como instrumento de interação entre os alunos do IFC e a comunidade

    Get PDF
    O Blog Ă© uma ferramenta de comunicação digital cuja adesĂŁo tem sido cada vez maior entre os jovens. AlĂ©m de abrigar textos de gĂȘneros diversos, nele, o blogueiro constrĂłi-se e constrĂłi uma relação com o leitor por meio de publicaçÔes ou posts. Levando-se em consideração o acesso, cada vez mais irrestrito, dos jovens Ă  internet e a afinidade deles com o gĂȘnero blog, o presente projeto objetiva criar um blog literĂĄrio no qual os alunos do IFC e a comunidade externa publiquem textos de tipologias diversas. Espera-se, com isto, ampliar o espaço de diĂĄlogo entre os envolvidos, bem como estimular a produção escrita em LĂ­ngua portuguesa

    Non-targeted high-resolution mass spectrometry study for evaluation of milk freshness-Supplementary Material

    No full text
    Supplementary material to the article "Non-targeted high-resolution mass spectrometry study for evaluation of milk freshness-Supplementary Material" Abstract: Milk freshness is an important parameter for both consumers’ health and quality of milk-based products. Up to now there have been neither analytical methods nor specific parameters to uniquely define milk freshness from a complete and univocal chemical perspective. In this study, 8 molecules were selected and identified as responsible for milk aging, using a liquid chromatography–high-resolution mass spectrometry approach followed by chemometric data elaboration. For model setup and marker selection, 30 high-quality pasteurized fresh milk samples were collected directly from the production site and analyzed immediately and after storage at 2 to 8°C for 7 d. The markers were then validated by challenging the model with a set of 10 milk samples, not previously analyzed. Our results demonstrated that the markers identified within this study can be successfully used for the correct classification of non-fresh milk samples, complementing and successfully enhancing parallel evaluations obtainable through sensory measures. Description of Supplementary Material: SECTION 1 – MULTIVARIATE DATA ELABORATION The final PCA (negative mode) and the OPLS-DA (negative mode) scores plot of the results obtained are presented in figures S1-S2. The variance of the x and y variables explained by the model (R^2 X (cum) and R^2 Y (cum)), and the cumulative predicted variation in the Y matrix (Q^2 (cum)) are reported below each figure. Figure S1. ESI - PCA scores plot of milk samples. Blue dots: Fresh Samples; green dots: “7 days” samples Figure S2. ESI - OPLS‐DA scores plot of the fresh samples against the “7 day” samples SECTION 2 – COMPOUNDS IDENTIFICATION Figure S3. Trends of the identified molecules through all the time points: Mean area values (+/- Standard Error) of the target compounds through the time points. Time points: blue bar, “t zero”; yellow bar, “1 day”; orange bar, “2 days”; green bar, “3 days”; violet bar, “4 days”; red bar, “7 days” SECTION 3 – SENSORIAL EVALUATIONS Table S1: List of the tasted sample Table S2: Resume of the panelist’s evaluation

    A non-targeted high-resolution mass spectrometry approach for the assessment of the geographical origin of durum wheat

    No full text
    The assessment of durum wheat geographical origin is an important and emerging challenge, due to the added value that a claim of origin could provide to the raw material itself, and subsequently to the final products (i.e. pasta). Up to now, the typical approach presented in literature is the evaluation of different isotopic ratios of the elements, but other techniques could represent an interesting and even more powerful alternative. In this study, using a non-targeted high‐resolution mass spectrometry approach, a selection of chemical markers related to the geographical origin of durum wheat was provided. Samples of the 2016 wheat campaign were used to set up the model and to select the markers, while samples from the 2018 campaign were used for model and markers validation. Including in the samples set different geographies across different continents, a discrimination through Italian, European and Not European samples is now possible
    corecore