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 The number of pilot-reported encounters with unmanned aircraft has been 

on the rise, since 2014 when the Federal Aviation Administration (FAA) first 

starting recording UAS encounter data. In 2018, UAS sightings climbed to 2,308 

nationwide, a 90.7% uptick from just three years earlier (see Figure 1). The 

Aviation Safety Reporting System (ASRS), a self-reporting medium for pilots and 

other aviation professionals, recorded a similar rise in UAS-reported incidents 

(ASRS, 2019). Prior to 2014, UAS incident reports were relatively rare, however, 

in recent years ASRS reports involving unmanned aircraft have climbed to more 

than 100 reports annually (ASRS, 2019). 
 

 

 
Figure 1. [Top] UAS Sighting Reports (U.S. only, November 2014 – December 

2018). Derived from (FAA, 2019b). [Bottom] Aviation Safety Reporting System 

UAV Reports, March 2009-March 20, 2019. Derived from (ASRS, 2019). 
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UAS Encounters During Final Approach 

Perhaps more concerning is the number of reported UAS encounters 

during the final approach phase of flight. A report by Gettinger and Michel (2015) 

highlighted 17 reported incidents in which pilots encountered unmanned aircraft 

while on approach to Los Angeles International Airport (KLAX) between 

December 8, 2015 and August 15, 2015 (see Figure 2). 
 

 
Figure 2. Drone Sightings and Close Encounters Around Los Angeles 

International Airport (LAX), December 8, 2015-August 15, 2015 (Gettinger & 

Michel, 2015). Reprinted with permission.  
 

In 2018, UAS sightings encountered during the final approach phase of 

flight ballooned to 526 a year, representing nearly 22.8% of all UAS sighting 

reports (see Figure 3). Moreover, unmanned aircraft are being encountered at 

distances and altitudes all along the approach corridor to airfields (see Figure 3). 
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Figure 3. [Top] UAS Sighting Reports (U.S. only, CY 2018), with proportion of 

pilots reporting UAS encounters on final approach colored in red. [Bottom] UAS 

sightings reported while on final approach (U.S. only, CY 2018), based on 

distance from airfield. Derived from (FAA, 2019b). 
 

Flight Deck Dynamics During Final Approach Phase of Flight 

Final approach would typically be defined as the last segment of flight, 

generally extending 5 NM (or more, platform dependent) from the airport to 

touchdown. In this phase of flight, a pilot’s sole objective is to establish a 

stabilized, constant airspeed speed descent, constant rate of descent, minimizing 

aircraft configuration changes, and visual acquisition of the runway-end-

environment to facilitate a safe visual landing. In Visual Meteorological 

Conditions (VMC), these objectives are generally easier to meet than in 

Instrument Meteorological Conditions (IMC). Flight during IMC demands a 
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precise balance of aircraft control and visual scrutiny of the outside world. During 

an IMC approach most airlines or professional, multi-crewed aircraft require the 

Pilot Flying to control the aircraft solely by reference to internal cockpit 

instruments, while the Pilot Monitoring would maintain responsibility for looking 

outside the cockpit for visual reference to the runway or other external hazards. 

As soon as this visual reference is gained, the Pilot Flying refocuses to the visual 

view to complete the landing. 

In either the VMC or IMC environments, a pilot’s attention would be 

focused straight ahead in the forward field of view. The ability to detect a 

conflicting sUAS would be hampered by any occlusion to vision, which could 

include a) the current inflight visibility, b) moisture, dirt, smoke or any other 

atmospheric occlusion, c) the sun positioning, especially at a low grazing angle to 

the horizon, or d) the aircraft cockpit window field of view (which may impede 

vision by the occluding strut structure).  

Simply due to the small size, sUAS movement would most likely be 

necessary for visual detection. In IMC, if the approach is necessary to precision 

approach minima (typically no higher than 200’ AGL), the amount of time 

available for a visual contact is measured in seconds and the sUAS would have to 

be similarly low to the ground, and moving. It is highly unlikely that at the bottom 

end of an IMC approach to minimums in the transition to VMC flight, that any 

visual sighting of a sUAS would occur, unless the sUAS were directly in front of 

the aircraft. In this case, an inflight collision would be imminent and likely 

unavoidable. 

The FAA sightings reports show a disturbing and increasing volume of 

sightings both around and in the vicinity of the final approach corridor. This could 

be the result of more complete reporting, a true increase in unauthorized sUAS 

activity around airports, or both. To combat the inappropriate placement and use 

of sUAS, a NPRM was enacted early in 2019 for comment on, Safe and Secure 

Operations of Small Unmanned Aircraft Systems (FAA, 2019a); however, this 

rule effort did not specifically address the sUAS threat to landing aircraft or the 

final approach corridor. The collision threat to an aircraft on final approach—

particularly, less-maneuverable, transport-category aircraft—is significant and 

could be exponentially more dangerous than light aircraft because of the higher 

mass and speed of the aircraft involved. 

 

Additional Challenges 

Aside from pilot-reported sightings, there is currently no reliable method 

for tracking UAS flights within the U.S. While the National Aeronautics and 

Space Administration (NASA) and the FAA are working to establish an 

unmanned traffic management solution to enable civil low-altitude UAS 

operations, such infrastructure is not yet in place (NASA, 2019). 
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Complicating this issue is the current lack of standardization for remote 

identification and tracking. In June 2017, the FAA’s UAS Identification and 

Tracking Aviation Rulemaking Committee (UAS ID ARC) released its report 

recommending the agency consider implementation of both direct broadcast and 

network publishing of UAS operations. Of the UAS ID ARC’s 74 members, 8 did 

not concur with the report’s findings, 20 concurred with exceptions, and 12 gave 

no response (UAS ID ARC, 2017). As of October 2019, the UAS ID ARC has not 

published further guidance. 

While the FAA has made strides to secure controlled airspace from UAS 

incursions, their efforts have been met with mixed results. 

 

Problem 

 The threat of a midair collision between a sUAS and manned aircraft is 

heightened during the final approach phase of flight, as aircraft transition from 

higher-altitude airspace into the low altitude arena now populated by small 

unmanned aircraft. Absent benchmarks for electronic detection and sense and 

avoid systems, pilots rely primarily on visual senses and proper visual scanning 

techniques to ensure a positive separation and collision avoidance from sUAS 

platforms during this segment of flight. Past studies have been inconclusive 

regarding the efficacy of visual methods for avoiding, reacting to, and 

maintaining separation from sUAS in the NAS. 

 

Purpose 

 The purpose of this research was to evaluate the effectiveness of pilot 

visual detection of unmanned aircraft during an instrument approach to landing 

scenario. This research serves to better understand the human factors implications 

for pilots in detecting and avoiding potential collision conflicts with small 

unmanned aircraft systems in the approach and landing environment. The authors 

sought to examine pilot mean visual detection distances to a sUAS craft that 

would pose a potential collision risk during the visual portion of a simulated 

instrument approach. This research represents the third in a series of related field 

experiments regarding sUAS detection, visibility, and collision avoidance (Loffi, 

Wallace, Jacob, & Dunlap, 2016; Wallace, Loffi, Vance, Jacob, Dunlap, & 

Mitchell, 2018). The authors sought to codify operational strategies for pilots to 

improve visibility, detection, and collision avoidance of small unmanned aircraft 

operating in the National Airspace System. 

 

Research Questions 

 The authors sought to answer the following research questions: 
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• What is the visual detection rate for a small unmanned aircraft system by 

an aware pilot when transitioning from an instrument approach to visual 

landing? 

• What is the mean distance at which a small unmanned aircraft system can 

be detected by an aware pilot when transitioning from an instrument 

approach to visual landing? 

• What factors affect visual detection of small unmanned aircraft systems 

by pilots? 

 

Literature Review 

 Several prior studies evaluated the complex problems associated with pilot 

spotting of small unmanned aircraft systems.  

 

Ohio University Study 

 In an experimental study conducted at Ohio University, Kephart and 

Braasch (2010) compared UAS visual detection success rates from both human 

participants and a mounted sense-and-avoid camera system. Participants flew 

aboard a Piper Saratoga and attempted to spot a Piper Warrior III aircraft, 

designed to simulate an unmanned aircraft system. The researchers created a 

series of head-on and intersecting conflict encounters between the two craft and 

measured the detection range for both the participants and electronic sense-and-

avoid system. The study sample of seven pilots were able to detect the conflict 

aircraft at a mean range of 1.275 SM. Head-on aircraft encounters were detected 

at a mean range of 1.038 SM and intersecting aircraft encounters were detected at 

a mean range of 1.511 SM. Since the study utilized a full-size aircraft target, the 

findings have limited applicability to small UAS detection, however, this initial 

research formulated the basis of many of the methodological and procedural 

elements used in the current study. 

 

Colorado Agricultural Aviation Association Case Study 

 Maddocks and Griffitt (2015) conducted a field test on behalf of the 

Colorado Agricultural Aviation Association evaluating pilot visibility of small 

unmanned aircraft systems operating in proximity to agricultural application 

operations. During the test, participants flying four fixed-wing aircraft (2 x 

Cessna T188C; 2 x AT402B) and one Robinson R44 helicopter were instructed to 

fly overhead five private fields and conduct a visual survey for obstacles and 

other hazards. One field did not contain any hazards, two fields contained an 

Agribotix Enduro (6 lb. quadrotor sUAS) inflight, and the final two fields 

contained marked ground tarps indicating the presence of UAS activity. While all 

pilots noted the ground markings, only one fixed-wing pilot briefly spotted a 

sUAS inflight, when the sun momentarily reflected off the aerial vehicle. The R44 
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pilot was able to successfully spot the sUAS in both test fields. Participants 

suggested that the sUAS craft were significantly more difficult to see than 

anticipated. While these results did not provide useful quantitative data, the 

qualitative findings validate subsequent research codifying the difficulties in 

spotting unmanned aircraft inflight. Additionally, the authors adapted selected 

methodological elements from this study—particularly the inclusion of a control 

pass, in which no sUAS was inflight, to ensure validity of the pilot-reported 

sightings. 

 

Oklahoma State University Studies 

 The authors initiated a series of sUAS visibility studies beginning in 2016. 

The initial research project evaluated the adequacy of vision for detection, 

identification, collision recognition, and evasion decision-making (Loffi et al., 

2016). Using a mixed methods field experiment, the researchers assessed the 

ability of 20 pilot participants flying a C-172 to spot a fixed-wing Anaconda 

sUAS and Iris quadrotor sUAS on predefined intercept courses during daylight 

VMC. Participants successfully detected the Anaconda sUAS during 84.2% of the 

intercepts at a mean range of .49 SM: the Iris sUAS was detected during 36.8% of 

intercepts at a mean range of less than .05 SM. The study concluded that based on 

the sighting distances, coupled with the speed of most general aviation aircraft, 

most pilots would be unable to successfully perform an evasive maneuver to 

avoid a collision, based on the FAA’s Aircraft Identification and Reaction Time 

Chart (FAA, 2016). 

 In a subsequent study, the authors assessed the effectiveness of pilot visual 

detection of sUAS equipped with high-intensity strobe lighting during daylight 

VMC (Wallace et al., 2018). Using similar methodology to the Loffi et al. (2016) 

study, the authors conducted a visibility field experiment with sample of 10 pilots 

who encountered a series of strobe light-equipped quadrotor sUAS on intercept 

courses. The sUAS was successfully detected during 3 of the 39 completed 

intercepts (n = 7.7%), with the detection distance highly variable ranging from .15 

SM to 2.42 SM. The authors reported the findings were inconclusive, and not able 

to definitively support that strobe lighting improved sUAS visibility during 

daylight visual meteorological conditions. 

 

Methodology 

 This study used a mixed methods research approach, with qualitative and 

quantitative elements. This research methodology was adapted, with only minor 

changes based on Loffi et al. (2016) and Wallace et al. (2018). Participants were 

purposefully sampled from certificated pilots recruited from a Part 141 collegiate 

flight training program in the Midwestern U.S. This research was approved by the 
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Oklahoma State University Institutional Review Board on April 15, 2019, 

Protocol #ED-18-68. 

 

Procedure 

 Participants were asked to perform a simulated instrument approach in a 

C-172S equipped with a G-1000 avionics suite, flown inbound to the Unmanned 

Systems Research Institute airfield, a UAS test site with a fabric surface runway. 

The approach was designed to emulate a standard 3˚ precision-approach glide 

path starting at the Final Approach Fix (FAF), 5 NM north of the airfield at 2,700 

feet MSL (1,700 feet AGL), with a Decision Height of 1,250 feet MSL (250 feet 

AGL). The Minimum Safe Altitude (MSA) was also 250 feet AGL. 

The test site was located within Class G airspace, and operating under a 

COA for UAS operations within a 1 NM radius from the surface to 2,500 ft AGL 

from the facility (see Figure 4). Each participant flew five approaches, in 

succession. All flights were to be conducted during daylight hours, during visual 

meteorological conditions. 
 

 
Figure 4. [Left] Unmanned Systems Research Institute COA and surrounding 

airspace (Excerpt from Dallas Sectional aeronautical chart). [Right] Aerial 

depiction of Unmanned Systems Research Institute airfield (derived from Google 

Earth; view looking from South to North). 
 

During each approach a small unmanned aircraft system performed 

scripted maneuvers on a perpendicular axis at a distance of 1,000 ft from airfield 

along the approach corridor. All UAS flights were conducted at 50 ft AGL. The 

approach MSA afforded a 200-ft safety margin between the unmanned aircraft 

and manned aircraft, however, pilots were advised they could execute a go-around 

or other evasive maneuver, if they felt safety had been compromised. 
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The airfield approach setup was purposefully designed to replicate a 

standard U.S. precision final approach path of 3˚ from the FAF, 5 NM from the 

touchdown point. The methodology was designed to have the participants execute 

a safe, familiar profile in visual conditions starting at the FAF. This 3˚ FAF 5 NM 

standard applies to all U.S. ILS, GPS, PAPI and VASI vertical guidance system, 

unless otherwise noted in the FAA’s Digital Chart Supplements or IFR Approach 

plates. While very much an IFR-sounding methodology, the design was not 

intended to replicate restricted IFR visibilities typically encountered when 

needing a precision approach. The design was intended to stabilize the aircraft on 

approach and allow the participant to concentrate on the forward-view sight 

picture of the runway all the way to the simulated Decision Height (Missed 

Approach Point) altitude. 

When executed properly, the visual sight picture of the participant would 

immobilize the runway in the aircraft windshield. The only change in the sight 

picture the participant was designed to see during the execution of the visual 

approach was the increasing size of the immobilized runway. 

An airborne researcher accompanied each flight, stationed in the aft seat. 

This individual was responsible for recording pilot sighting times, reported 

verbally on the intercom. Upon conclusion of each pass, the researcher would also 

document participant qualitative observations, comments, or impressions.  

 

UAS Procedure 

Researchers elected to use a DJI Phantom IV (white quadrotor) UAS for 

the experiment. This selection was made due to the ubiquitous nature of DJI 

platforms operating within the NAS, as well as UAS fleet availability. It is 

estimated that DJI platforms comprise approximately 74% of the market share for 

consumer UAS within the United States (Skylogic Research, 2018). 

 The researchers included the following UAS maneuvers, implemented 

randomly to ensure reliability (Note: all aircraft approaches were conducted along 

a southbound trajectory): 

• Control Pass--No UAS in flight (implemented to screen false positive 

sightings) 

• Static-Starboard—UAS flew out to a distance of 1,000 feet north of the 

airfield and performed a stationary, hovering maneuver orientated 100 

feet east of the approach course. 

• Static-Port-- UAS flew out to a distance of 1,000 feet north of the airfield 

and performed a stationary, hovering maneuver orientated 100 feet west 

of the approach course. 

• Maneuvering—UAS flew out to a distance of 1,000 feet north of the 

airfield and transitioned laterally crossing back and forth up to 200 feet 

left and right of the approach course 
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Safety Protocols 

To further ensure safety during the experiment, a safety pilot was stationed 

in the co-pilot’s seat and instructed to assume command of the aircraft if he 

determined flight safety had been compromised. Safety pilots were all 

experienced Certified Flight Instructors and were considered non-participants for 

experimental purposes. Safety pilots were also provided a sequential list of the 

UAS maneuver sets, and furnished access to an isolated radio to perform safety 

coordination with UAS operators on the ground. The pre-planned response to a 

UAS flyaway, potential real-world collision threat, or other unforeseen 

emergency was for the initiating individual (any individual that noticed the safety 

issue) to call a “knock it off” over the radio and the safety pilot to initiate a 

climbing evasive maneuver to exit the UAS operating area. 

 

Assumptions 

 The researchers presumed the following conditions during the experiment 

(as adapted from Wallace et al., 2018): 

 

• The skill and experience of participants was reasonably representative of 

general aviation pilots of equivalent certificate levels. 

• Participants honestly and accurately self-reported visual acuity. 

• Positional and altitude data from the C-172/S avionics suite and Phantom 

IV telemetry were assumed to be accurate. 

• Participants reported sUAS sightings honestly, accurately, and without 

substantive delay. (Note: honest reporting was also validated through the 

use of a random control intercept.) 

 

Limitations  

 The researchers were constrained by the following limitations (also 

adapted from Wallace et al., 2018). 

 

• The high cost of conducting flight experiments rather than simulation 

limited the scope and number of participants. The limited number of 

participants prevented collection of adequate data points to conduct 

statistical inference or generalizability testing. 

• The experiment was supposed to include two maneuvering passes, with 

one originating from the port side of the aircraft, and the other from the 

starboard side. Unfortunately, an execution error resulted in the one of 

these pass types being randomly selected. This explains the inconsistency 

in the number of pass types for each participant. The authors reported this 

10

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 6 [2019], Iss. 5, Art. 12

https://commons.erau.edu/ijaaa/vol6/iss5/12
DOI: https://doi.org/10.15394/ijaaa.2019.1421



inconsistency in the dataset by describing this intercept as the random 

pass. 

 

Findings and Discussion 

 The study was carried out from July 8-11, 2019, with 10 pilots 

participating. Pilot demographic information and self-reported visual acuity are 

presented in Table 1. The researchers loosely associated advanced pilot 

certificates with participants’ experience in see and avoid procedures. 

 

Table 1 

Participant Aeronautical Demographics 
Participant FAA Pilot Certificate(s) Medical 

Certificate 

Reported Vision 

1 CP, IR 1st Class 20/20 

2 CP, IR, CFI 1st Class 20/20 

3 CP, IR, CFI 1st Class   20/20* 

4 PP, IR 1st Class 20/20 

5 CP, IR, CFI 3rd Class 20/20 

6 PP, IR 1st Class 20/20 

7 PP, IR 1st Class 20/20 

8 CP, IR, CFI 1st Class 20/20 

9 CP, IR, CFI 1st Class 20/20 

10 CP, IR 1st Class 20/20 

Note. (PP = Private Pilot; IR = Instrument Rating; CP = Commercial Pilot; CFI = 

Certified Flight Instructor). * Indicates with corrective lenses. 
 

Flights were conducted between the hours of 7:30 AM-12:30 PM, local 

time in VMC. Weather data was collected to determine possible environmental 

impacts to visibility (see Table 2). 

 

The airborne researcher reported that low-lying haze decreased visual 

clarity during the July 8-10 flights. This condition was reportedly not present on 

July 11, which may have contributed to improved sighting rates. 
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Table 2 

Local Weather Information at Onset of Participant Flights 
P# METAR Observation 

1 KSWO 081300Z AUTO 23004KT 10SM CLR 25/21 A2995 RMK T02500210 MADISHF 

2 KSWO 081430Z AUTO 00000KT 10SM CLR 29/20 A2997 RMK T02900200 MADISHF 

3 KSWO 081625Z AUTO 19011KT 10SM FEW100 32/20 A2996 RMK T03200200 

MADISHF 

4 KSWO 090753Z AUTO 17006KT 10SM CLR 24/22 A2988 RMK AO2 SLP103 

T02440217 

5 KSWO 091435Z AUTO 17010KT 10SM CLR 28/21 A2993 RMK T02800210 MADISHF 

6 KSWO 101300Z 19005KT 2SM HZ CLR 28/24 A3000 RMK AO2 VIS 1V4 T02830239 

7 KSWO 101430Z AUTO 19005KT 10SM CLR 31/23 A3002 RMK T03100230 MADISHF 

8 KSWO 111253Z 01005KT 10SM SCT065 24/18 A3013 RMK AO2 SLP187 T02440178 

9 KSWO 111430Z AUTO 05011KT 10SM CLR 28/17 A3012 RMK T02800170 MADISHF 

10 KSWO 111605Z AUTO 05009KT 10SM CLR 31/16 A3011 RMK T03100160 MADISHF 

Note. Data derived from archival Oklahoma ASOS data obtained from Iowa State 

University, Iowa Environmental Mesonet, https://mesonet.agron.iastate.edu/ 
 
 
Quantitative Data 

 

Table 3 

Sighting Ranges by Intercept Type (feet) 

Participant Control Static-SB 

Static-

P Moving 

Random 

Pass 

Random Pass 

Type 

P1 0 0 0 0 0 Moving 

P2 0 0 0 1086 0 Static-P 

P3 0 0 0 0 0 Moving 

P4 0 0 0 0 0 Moving 

P5 0 0 0 0 1585 Moving 

P6 0 0 0 0 0 Static-P 

P7 0 0 0 0 2219 Moving 

P8 0 0 1077 842 1781 Moving 

P9 0 950 0 1400 1615 Moving 

P10 0 0 213 1488 2324 Moving 
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Figure 5. UAS Sightings by Range and Altitude (measured in feet).  
 

 Sightings by Intercept Type. Table 3 and Figure 5 present UAS sighting 

data. Overall, participants spotted the unmanned aircraft on 12 occasions out of a 

total of 40 possible events (n = 30% detection rate). There were no false positive 

reports during the control pass, indicating participants were likely honest in 

reporting visual acquisition of the unmanned aircraft. Detections ranged in 

distance from a minimum of 213 feet to a maximum of 2,324 feet (see Figure 6). 
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Figure 6. Telemetry plot of UAS sighting by Participant 10. This intercept depicts 

the maximum sUAS sighting distance recorded during the experiment, with a 

detection range of 2,324 feet. Initial detection locations for both the aircraft and 

sUAS are depicted by the target reticule icon. The sUAS was maneuvering 

laterally at the time of detection. 
 

The largest proportion of sightings occurred during sUAS moving passes, 

with 9 sightings out of a total of 18 possible events (n = 50%). The mean 

detection range for moving sUAS (excluding null sightings) was 1,593.3 feet. 
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This leaves very little margin for a pilot to detect a sUAS, recognize the collision 

threat, make an evasion decision, and successfully execute an evasive maneuver.  

The detection rate for static passes was much lower, with only 3 detections 

out of 22 possible events, representing a detection rate of 13.6%. Static detections 

were slightly higher when the sUAS was positioned on the port side of the 

aircraft. This makes logical sense, due to the fact that the participant was 

positioned in the left seat of the aircraft, giving them easier access to view the left 

portion of the windscreen, as well as out the left pilot window. Nevertheless, the 

lack of additional data makes this observation anecdotal rather than conclusive. 

The mean detection distance for static sUAS targets was 746.7 feet, nearly half 

the distance of moving sUAS detections. 

 Ground haze during the July 8-10 flights may have played a significant 

role in obscuring sUAS detection, which may explain the uptick in participant 

sightings that occurred on July 11. 

Researchers evaluated the vectors at which pilots made successful 

sightings. Moving sUAS sightings were exclusively detected within a small visual 

cone extending 0˚-5˚ right of center and 5˚-10˚ downward from the horizon. Static 

sUAS targets were detected more peripherally. Results are presented in Table 4 

and Figure 7. 
 

Table 4 

Successful sUAS Sightings Data 

Part / 

Intercept  

Intercept 

Type 

Altitude 

▲ (ft) 

Lateral 

Dist 

(ft) 

Slant 

Range 

(ft) 

Horizontal 

Aspect Angle 

(˚) 

Vertical 

Aspect Angle 

(-˚) 

P2-4 Moving 102 1081 1086 5 5 

P5-5 Moving 140 1579 1585 0 5 

P7-4 Moving 127 2216 2219 3 5 

P8-3 Moving 147 829 842 1 10 

P8-4 Static 153 1066 1077 -4 8 

P8-5 Moving 198 1770 1781 4 6 

P9-2 Moving 137 1393 1400 1 6 

P9-3 Static 126 942 950 8 8 

P9-5 Moving 144 1608 1615 4 5 

P10-1 Moving 133 1482 1488 1 5 

P10-2 Static 167 132 213 -44 52 

P10-4 Moving 166 2318 2324 3 4 
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Figure 7. Pilot Visual Aspect at Time of Sighting.  
 

Qualitative Data 

 

 The participants provided a plethora of observations, comments, and 

impressions from their experience. An evaluation of participant comments 

revealed several trends. 

 Spotting the sUAS was difficult. Six of the 10 participants commented 

about how difficult it was to detect the sUAS. Participant #2 called it a “very 

small speck moving left to right in the glidepath.” Participant #3 suggested, “you 

won’t see it unless you look at the right spot at the right time.” According to 

participant #5, “I feel I have good vision. If there is a UAS there, it is very hard to 

see.” Participant #7 commented, “it makes me kind of nervous knowing it [sUAS] 

is there but not seeing it.” Participant #8 alluded, “in a faster airplane it would be 

hard to spot, if not alerted…would not be easy to see. Being hyper alert 

contributed to seeing the UAV.” Participant #9 stated “[the UAS was] difficult to 

see…” Participant #10 confirmed, “It was a lot harder [to spot] than first thought. 

If not alerted as in the research, it would have been harder still.” 

 These observations are also supported by the quantitative data. The 

conditions of the experiment likely improved sightings beyond what would 

normally be realized in operational settings. First, participants were made aware 

of the presence of a sUAS, encouraging greater situational awareness and focus 

outside the aircraft. Additionally, atmospheric conditions—with the exception of 

the aforementioned haze—were generally favorable with a reported visibility of 

10 SM during all but one pass (see Table 2). Finally, the experiment was 
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conducted in uncongested Class G airspace, inducing very few operational 

distractions for the pilot participant. 

 Wallace et al. (2018) reflected these same findings in a similar, prior 

experiment where “90% [of participants] indicated the sUAS was ‘difficult’ or 

‘very difficult’ to see. Forty percent of participants stated they had ‘low’ or ‘no’ 

confidence in their ability to detect the sUAS” (pp. 64-5). 

Contrast. Half of the participants commented about the importance of 

contrast between the sUAS and background. Participant #4, “If you have blue 

behind objects [sky] it is much easier to see than if you have green [ground].” 

Conversely, Participant #8 disagreed stating, “the contrast of the white UAV to 

the green grass…brought my attention to the UAV. Participant #9 also 

commented about the white UAV color having strong contrast with the green 

background. Participant #10 agreed stating, “I was attracted by the white color 

against the green grass and movement.” Participant #6 suggested the addition of 

lights or high-visibility coloration to improve contrast. The recommendations for 

high contrast was also a finding reflected in Loffi et al. (2016).  

Moving sUAS are easier to spot. Four of the 10 participants indicated 

that when the sUAS was in motion it became slightly easier to spot. Participant #7 

stated, “[sUAS] motion helped to detect. If sitting still it would be hard to see.” 

Participant #8 observed, “movement first brought my attention to the UAV.” 

Participant #9 indicated, “It was difficult to see except for movement.” Participant 

#10 echoed these observations, saying, “The way the UAV moved confirmed it 

was not a bird...movement attracted attention.” This finding is notable since in the 

Loffi et al. (2016) study, researchers recorded improved visual detection of fixed 

wing sUAS platform over rotorcraft sUAS. This was initially thought to be 

attributed to the high-visibility wing-flash produced when the fixed-wing craft 

maneuvered, however, this effect may actually be more resultant of the relative 

motion of the sUAS to the observer.  

 Misidentification. Two participants indicated that despite being aware of 

the presence of a sUAS, they did not initially identify the spotted object correctly. 

Participant #9 identified the sUAS as a possible fixed-wing aircraft, “it appeared 

to have a solid wing as it moved left to right…glancing at the UAV and flying the 

airplane gave me the impression the UAV was a fixed-wing.” Participant #10 

similarly stated, “it took a few moments to recognize what I was looking at, which 

was somewhat surprising.” 

 UAS more likely to be seen from front and left aspects. Researchers 

anticipated more comments about the positioning of the participant in the aircraft 

relative to the sUAS aspect, however, only one comment was recorded. 

Participant #1 said, “If it’s off to the side I will not see it. I am concentrating 

straight ahead. Left is easier, since looking right requires me to see up and over 

the dash.” Nevertheless, the earlier-presented quantitative data suggests higher 
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successful detections within a 12˚ lateral and 5˚ vertical wedge of center. Loffi et 

al. (2016) also identified the tendency of participants to centrally focus scanning 

efforts, with 10% of the participants not performing full-range visual scanning 

and instead focusing between the “11:00-2:00 positions” (p. 18). 

 

Image/Video Data  

 The researchers collected a number of images and videos from the 

experiment that highlight various findings and reported concepts. While not all 

elements fall within the direct scope of the study, the exploratory nature of the 

research made a compelling case for reporting these observations.  

 Several images of the various intercepts were taken from the ground 

perspective. It is notable that in several cases these images generated the illusion 

that the aircraft was much closer in proximity and altitude than reality (see Figure 

8). In these cases, the ground observer’s visual angle and perception places the 

closer sUAS in direct visual line with the aircraft. An optical illusion is created 

due to the tendency of observers to subconsciously compare the objects as 

relatively comparable in size. This finding was also noted in Vance et al. (2017). 

The size of the sUAS (excluding propellers) measures a width of 289.5mm (.95 

ft) and height of 196mm (.64 ft), whereas the C-172/S measures approximately 36 

ft wide and 9 ft high, respectively (Cessna, 2012; DJI, 2019). This effect is 

modeled in Figure 8. 
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Figure 8. [Top] Image of sUAS approach encounter (ground perspective). This 

view is comparable to what a Remote Pilot or Visual Observer would perceive. 

[Bottom] Note the size differential between the aircraft and sUAS. Because the 

sUAS is closer to the observer, it appears larger and thus seems perceptively 

closer to the aircraft. Additionally, because the sUAS and the aircraft are along 

the same visual plane relative to the observer, the sUAS appears to present 

collision threat, whereas, there is clearly an altitude separation between the two. 
 

 Data was also collected from the Phantom IV to better understand the 

Remote Pilot’s perspective with regard to aircraft collision avoidance. Figure 9 

depicts time-delayed screen captures from the Phantom IV’s electro-optical 

camera taken at 30-, 10-, and 2-seconds prior to the aircraft intercepting the 

sUAS. These images correspond to lateral ranges of approximately 5,063 ft; 1,688 

ft; and 338 ft, respectively. The aircraft was extremely difficult to detect at long 

range. The experimental aircraft was equipped with wig-wag LED landing lights, 

which were activated during the experiment. Observation of the alternating flash 

pattern was only faintly recognizable; and, the aircraft is almost indiscernible at 

the 30-second interval. At the 10-second interval, the wig-wag lights are fairly 

obvious and the aircraft form is generally discernable. Two seconds prior to 

intercept, the aircraft’s individual structural elements are easily spotted; and, wig-

wag light pattern becomes more difficult to see as the aircraft transitions 

overhead. 
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Figure 9. Excerpts from sUAS video taken prior to aircraft overflight of sUAS 

with aircraft highlighted in red: (Top) 30 seconds prior; (Middle) 10 seconds 

prior; (Bottom) 2 seconds prior. Long-range identification was nearly impossible 

without relying on spotting the aircraft’s wig-wag LED landing lights. Full video 

available at: https://commons.erau.edu/ijaaa/vol6/iss5/12/ 
 

 Video from a camera mounted on the aircraft’s tie-down ring captures an 

approximation of the pilot’s visual perspective of a sUAS encounter. It should be 

noted that a pilot’s view is likely to be obscured by obstacles such as the 

instrument panel, aircraft structure, or even an unclean windscreen—these 

conditions all make sUAS detection more difficult than presented in the video. 

Time-capture images from the external camera shown in Figure 10 reveal the 

relatively small size of the sUAS and accompanying difficulty in successfully 

detecting the sUAS. The video from Figure 9 corresponds to aircraft and sUAS 

telemetry presented in Figure 11. 
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Figure 10. Excerpts from externally-mounted video camera taken during 

Participant 1, Intercept 2. Note the relatively small size makes the sUAS 

extremely difficult to detect. The participant did not detect the sUAS during this 

pass. Full video available at: https://commons.erau.edu/ijaaa/vol6/iss5/12/ 
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Figure 11. Aircraft/UAS telemetry overview presented in Google Earth. Aircraft 

ground track presented in yellow, with altitude indicated by raised plots; sUAS 

flight track depicted in red. The participant did not detect the sUAS during this 

pass. Data derived from Participant 1, Intercept 2. This telemetry corresponds to 

video data presented in Figure 9. 
 

Conclusions and Recommendations 

 

Visual Detection Rate 

 Participants detected the sUAS during 12 out of 40 possible events, 

resulting in an overall detection rate of 30.0%. Moving sUAS were detected 

during 9 out of 18 possible events, resulting in a detection rate of 50.0%. Static 

sUAS were detected during only 3 out of 22 possible events, yielding a detection 

rate of 13.6%. This data seems to indicate that detection rate is substantially 

improved when the sUAS is in motion. 

 

Detection Distance 

 Overall, the mean detection distance for all passes (excluding failed 

sightings) was 1,382 ft. Mean detection distance for moving sUAS was 1,593 ft. 

The mean detection distance for static sUAS was 747 ft. Again, this data seems to 

suggest that moving sUAS are easier to spot than static ones.  
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Factors Affecting Visual Detection  

 Participants generally indicated that spotting the sUAS was much more 

difficult than originally anticipated. Despite favorable visual conditions, 

participants were still challenged to successfully spot airborne sUAS. While 

participants indicated that moving and high-contrast sUAS targets were easier to 

detect, efforts should be made to employ scanning strategies to spot static and 

low-contrast targets, as well. This suggests a possible need for emphasis in 

scanning training to adequately prepare pilots to employ proper techniques to 

maximize visual detection. This could also include an effort to make manned 

pilots more aware of the need for vigilant scanning to detect unmanned aircraft 

when flying at low altitude or in areas of known sUAS operations. 

 Small UAS operators should be cognizant of the challenges associated 

pilot detection of their platforms. Steps should be taken by the sUAS Remote 

Pilot to maximize the conspicuity of their platforms, such as using high-contrast 

UAS colors, performing regular maneuvers, or other strategies to make their 

operation as visible as possible. 

 Both the sightings data and participant comments suggest that pilot 

scanning tends to concentrate within the central rather than peripheral fields of 

view. Small UAS operating near the approach corridor, yet outside a pilot’s field 

of view or concentration could easily and quickly penetrate the approach corridor, 

thereby posing an immediate and immutable collision threat. Pilots need to 

effectively scan the approach path to ensure clearance, but also should not forget 

to regularly check the periphery for possible airborne threats outside of the 

normal, centralized field of view. 

 

Evasive Action Impact 

 This research highlights that the relatively high closure rate coupled with 

the short detection distances between the aircraft and sUAS leaves little (if any) 

margin for evasive action. Even when the aircraft is configured for its slowest 

approach speed (approximately 65 kts/74.8 mph) and the sUAS is static, the 

available response time would be approximately 14.5 seconds, based on the mean 

detection distance of 1,593 ft. This leaves a margin of only 2 seconds above the 

FAA’s recommended minimum reaction time required for evasion (FAA, 2016). 

Even at the maximum detection range of 2,324 ft recorded during the experiment, 

the available response time would be only 21.2 seconds. The aforementioned 

condition is the best case scenario. A pilot’s available reaction time would be 

considerably less if the aircraft approach speed were higher or the unmanned 

aircraft was closing on the aircraft’s flight path. This finding is generally similar 

to the findings contained in Loffi et al. (2016). Succinctly, UAS sightings in the 

final moments of an approach present a significant risk to flight safety. An aircraft 
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on a stabilized approach to landing will be at low altitude, configured for a low 

airspeed. These conditions make abrupt, evasive maneuvers particularly 

hazardous.   

 

Future Research 

 

 In a future research project, the authors intend to conduct an experiment 

attaching a UAvionics Ping—an ADS-B (out) device—to a sUAS to determine if 

pilots can effectively correlate, spot, and evade sUAS displayed on electronic 

situational awareness and collision avoidance equipment. The objective of this 

research is to determine how pilot access to real-time UAS Remote Identification 

data could improve pilot situational awareness and midair collision avoidance. 
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