79 research outputs found

    ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    Get PDF
    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy

    Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    Get PDF
    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs

    Vertical Transport Rates in the Stratosphere in 1993 from Observations of CO2, N2O and CH4

    Get PDF
    Measurements of CO2, N2O and CH4 are analyzed to define hemispheric average vertical exchange rates in the lower stratosphere from November 1992 to October 1993. Effective vertical diffusion coefficients were small in summer, less than or equal to 1 m(exp 2)/sec at altitudes below 25 km; values were similar near the tropopause in winter, but increased markedly with altitude. The analysis suggests possibly longer residence times for exhaust from stratospheric aircraft, and more efficient transport from 20 km to the middle stratosphere, than predicted by many current models. Seasonally-resolved measurements of stratospheric CO2 and N2O provide significant new constraints on rates for global-scale vertical transport

    Airborne Observations of Carbon Dioxide and Methane Emission Ratios from the Yosemite Rim Wildfire, California

    Get PDF
    This paper presents airborne in situ measurements of carbon dioxide (CO2) and methane (CH4) downwind of an exceptionally large wildfire, the Rim Fire, near Yosemite, California, during two flights. Data analyses are discussed in terms of emission ratios (ER) and emission factors (EF) and are compared to previous studies. CH4 ERs were 7.5-7.9 parts per billion (ppb) CH4 for every 1 part per million (ppm) of CO2 (ppb CH4 (ppm CO2)(exp.-1)) on 29 August 2013 and 14.2-16.7 ppb CH4 (ppm CO2)(exp. -1) on 10 September 2013. This study measured only CO2 and CH4; however, estimated emission factors (EEFs) are used as rough estimates of EFs of CO2 and CH4 and are in close agreement with EFs reported in previous studies. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. Given the magnitude of the Yosemite Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western US to date, this study provides a valuable measurement dataset and may have important implications for forestry and regional air quality management

    From sensorimotor learning to memory cells in prefrontal and temporal association cortex: A neurocomputational study of disembodiment

    Get PDF
    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in “embodied” sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to “disembodiment” (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and “disembodied” working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the “where” question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related “disembodied” neuronal activity emerges in “embodied” APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions

    Conflicts Of Interest And The Case Of Auditor Independence: Moral Seduction And Strategic Issue Cycling

    Full text link

    Zur Kenntnis der Leukaemie im Kindesult er.

    No full text
    OPLADEN-RUG0

    TES Carbon Monoxide Validation during the Two AVE Campaigns using the Argus and ALIAS Instruments on NASA's WB-57F

    No full text
    The Aura Validation Experiment (AVE) focuses on validating Aura satellite measurements of important atmospheric trace gases using ground-based, aircraft, and balloon-borne instruments. Global satellite observations of CO from the Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite have been ongoing since September 2004. This paper discusses CO validation experiments during the Oct-AVE (2004 Houston, Texas) and CR-AVE (2006 San Jose, Costa Rica) campaigns. The coincidences in location and time between the satellite observations and the available in situ profiles for some cases are not ideal. However, the CO distribution patterns in the two validation flight areas are shown to have very little variability in the aircraft and satellite . observations, thereby making them suitable for validation comparisons. TES CO profiles, which typically have a retrieval uncertainty of 10-20%, are compared with in situ CO measurements from NASA Ames Research Center's Argus instrument taken on board the WB-57F aircraft during Oct-AVE. TES CO retrievals during CR-AVE are compared with in situ measurements from Jet Propulsion Laboratory's Aircraft Laser Infrared Absorption Spectrometer (ALIAS) instrument as well as with the Argus instrument, both taken on board the WB-57F aircraft. During CR-AVE, the average overall difference between ALIAS and Argus CO was 4%, with the ALIAS measurement higher. During individual flights, 2-min time-averaged differences between the two in situ instruments had standard deviation of 14%. The TES averaging kernels and a priori constraint profiles for CO are applied to the in situ data for proper comparisons to account for the reduced vertical resolution and the influence of the a priori in the satellite-derived profile. In the TES sensitive pressure range, approx.700-200 hPa, the in situ profiles and TES profiles agree within 5-10%, less than the variability in CO distributions obtained by both TES and the aircraft instruments in the two regions. TES CO is slightly lower than in situ measurements in the Houston area (midlatitudes) and slightly higher than in situ CO measurements in the Costa Rica region (tropical)
    corecore