11 research outputs found

    p27(Kip1 )is expressed in proliferating cells in its form phosphorylated on threonine 187

    Get PDF
    BACKGROUND: G1/S cell cycle progression requires p27(Kip1 )(p27) proteolysis, which is triggered by its phosphorylation on threonine (Thr) 187. Since its levels are abundant in quiescent and scarce in cycling cells, p27 is an approved marker for quiescent cells, extensively used in histopathology and cancer research. METHODS: However here we showed that by using a specific phosphorylation site (pThr187) antibody, p27 is detectable also in proliferative compartments of normal, dysplastic and neoplastic tissues. RESULTS: In fact, whereas un-phosphorylated p27 and MIB-1 showed a significant inverse correlation (Spearman R = -0.55; p < 0,001), pThr187-p27 was positively and significantly correlated with MIB-1 expression (Spearman R = 0.88; p < 0,001). Thus proliferating cells only stain for pThr187-p27, whereas they are un-reactive with the regular p27 antibodies. However increasing the sensitivity of the immunocytochemistry (ICH) by the use of an ultra sensitive detection system based on tiramide signal amplification, simultaneous expression and colocalisation of both forms of p27 was shown in proliferating compartments nuclei by double immunofluorescence and laser scanning confocal microscopy studies. CONCLUSION: Overall, our data suggest that p27 expression also occurs in proliferating cells compartments and the combined use of both regular and phospho- p27 antibodies is suggested

    An Orthotopic Model of Uveal Melanoma in Zebrafish Embryo: A Novel Platform for Drug Evaluation

    No full text
    Uveal melanoma is a highly metastatic tumor, representing the most common primary intraocular malignancy in adults. Tumor cell xenografts in zebrafish embryos may provide the opportunity to study in vivo different aspects of the neoplastic disease and its response to therapy. Here, we established an orthotopic model of uveal melanoma in zebrafish by injecting highly metastatic murine B16-BL6 and B16-LS9 melanoma cells, human A375M melanoma cells, and human 92.1 uveal melanoma cells into the eye of zebrafish embryos in the proximity of the developing choroidal vasculature. Immunohistochemical and immunofluorescence analyses showed that melanoma cells proliferate during the first four days after injection and move towards the eye surface. Moreover, bioluminescence analysis of luciferase-expressing human 92.1 uveal melanoma cells allowed the quantitative assessment of the antitumor activity exerted by the canonical chemotherapeutic drugs paclitaxel, panobinostat, and everolimus after their injection into the grafted eye. Altogether, our data demonstrate that the zebrafish embryo eye is a permissive environment for the growth of invasive cutaneous and uveal melanoma cells. In addition, we have established a new luciferase-based in vivo orthotopic model that allows the quantification of human uveal melanoma cells engrafted in the zebrafish embryo eye, and which may represent a suitable tool for the screening of novel drug candidates for uveal melanoma therapy

    Molecular Typing of Mycobacterium bovis Strains Isolated in Italy from 2000 to 2006 and Evaluation of Variable-Number Tandem Repeats for Geographically Optimized Genotyping▿

    No full text
    Spoligotyping and exact tandem repeat (ETR) analysis of Mycobacterium bovis and M. caprae isolated strains has been routinely carried out in Italy since 2000 to obtain a database of genetic profiles and support traditional epidemiological investigations. In this study, we characterized 1,503 M. bovis and 57 M. caprae isolates obtained from 2000 to 2006 in 747 cattle herds mainly located in northern Italy. We identified 81 spoligotypes and 113 ETR profiles, while the combination of spoligotyping/ETR analysis differentiated 228 genotypes, with genotypic diversity indices of 0.70 (spoligotyping), 0.94 (ETR-A to -E typing), and 0.97 (spoligotyping/ETR-A to -E typing), respectively. Despite the high degree of resolution obtained, the spoligotyping/ETR methods were not discriminative enough in the case of genotypes characterized by the combination of SB0120, the predominant spoligotype in Italy, with the most common ETR profiles. To obtain a more informative subset of typing loci, 24 mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) markers were evaluated by analyzing a panel of 100 epidemiologically unrelated SB0120 isolates. The panel was differentiated into 89 profiles with an overall genotypic diversity of 0.987 that could be also achieved by using a minimal group of 13 loci: ETR-A, -B, and -E; MIRU 26 and 40; and VNTR 2163a, 2163b, 3155, 1612, 4052, 1895, 3232, and 3336. The allelic diversity index and the stability of single loci was evaluated to provide the most discriminative genotyping method for locally prevalent strains

    Data from Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer

    No full text
    Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC–driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer

    The Molecular Taxonomy of Primary Prostate Cancer

    Get PDF
    There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defectsclose
    corecore