768 research outputs found

    Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon

    Get PDF
    Journal ArticleThe final publication is available at Springer via http://dx.doi.org/10.1007/s00442-015-3250-5Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were—on average—slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.Natural Environment Research Council (NERC) TROBIT consortiumRoyal Society - University Research Fellowshi

    The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C/ N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ 13C and sand content explaining 0.63 of the observed variability. The variation of δ 13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in δ 13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of Published by Copernicus Publications on behalf of the European Geosciences Union. 5042 G. Saiz et al.: Influence of C3/C4 on SOM in tropical biomes C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM.UK National Environment Research CouncilAustralian Institute of Nuclear Science and Engineering (AINSE Ltd

    Foliar trait contrasts between African forest and savanna trees: Genetic versus environmental effects

    Get PDF
    Journal ArticleVariations in leaf mass per unit area (Ma) and foliar concentrations of N, P, C, K, Mg and Ca were determined for 365 trees growing in 23 plots along a West African precipitation gradient ranging from 0.29 to 1.62m a-1. Contrary to previous studies, no marked increase in Ma with declining precipitation was observed, but savanna tree foliar [N] tended to be higher at the drier sites (mass basis). Generally, Ma was slightly higher and [N] slightly lower for forest vs savanna trees with most of this difference attributable to differences in soil chemistry. No systematic variations in [P], [Mg] and [Ca] with precipitation or between trees of forest vs savanna stands were observed. We did, however, find a marked increase in foliar [K] of savanna trees as precipitation declined, with savanna trees also having a significantly lower [K] than those of nearby forest. These differences were not related to differences in soil nutrient status and were accompanied by systematic changes in [C] of opposite sign. We suggest an important but as yet unidentified role for K in the adaption of savanna species to periods of limited water availability; with foliar [K] being also an important factor differentiating tree species adapted to forest vs savanna soils within the 'zone of transition' of Western Africa.Natural Environment Research Council TROBIT Consortium projectRoyal Society - University Research Fellowshi

    Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    Get PDF
    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m ag-1, savanna soils had consistently lower exchangeable cation concentrations and higher C/N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests-in combination with some newly conceptualised interacting effects of PA and θP also presented here-a critical role for potassium as a modulator of tropical vegetation structure and function.Natural Environment Research Council (NERC) TROBIT Consortium projectCNPqRoyal Society of London - Wolfson Research Merit Awar

    The carbon balance of South America: A review of the status, decadal trends and main determinants

    Get PDF
    Copyright © 2012 European Geosciences Union. This is the published version available at http://www.biogeosciences-discuss.net/9/627/2012/bgd-9-627-2012.htmlWe attempt to summarize the carbon budget of South America and relate it to its dominant controls: population and economic growth, changes in land use practices and a changing atmospheric environment and climate. Flux estimation methods which we consider sufficiently reliable are fossil fuel emission inventories, biometric analysis of old-growth rainforests, estimation of carbon release associated with deforestation based on remote sensing and inventories, and finally inventories of agricultural exports. Other routes to estimating land-atmosphere CO2 fluxes include atmospheric transport inverse modelling and vegetation model predictions but are hampered by the data paucity and the need for improved parameterisation. The available data we analyze suggest that South America was a net source to the atmosphere during the 1980s (∼0.3–0.4 Pg C yr−1) and close to neutral (∼0.1 Pg C yr−1) in the 1990s with carbon uptake in old-growth forests nearly compensating carbon losses due to fossil fuel burning and deforestation. Annual mean precipitation over tropical South America measured by Amazon River discharge has a long-term upward trend, although over the last decade, dry seasons have tended to be drier and longer (and thus wet seasons wetter), with the years 2005 and 2010 experiencing strong droughts. It is currently unclear what the effect of these climate changes on the old-growth forest carbon sink will be but first measurements suggest it may be weakened. Based on scaling of forest census data the net carbon balance of South America seems to have been an increased source roughly over the 2005–2010 period (a total of ∼1 Pg C of dead tree biomass released over several years) due to forest drought response. Finally, economic development of the tropical forest regions of the continent is advancing steadily with exports of agricultural products being an important driver and witnessing a strong upturn over the last decade

    Premature mortality among people with severe mental illness — New evidence from linked primary care data

    Get PDF
    Studies assessing premature mortality in people with severe mental illness (SMI) are usually based in one setting, hospital (secondary care inpatients and/or outpatients) or community (primary care). This may lead to ascertainment bias. This study aimed to estimate standardised mortality ratios (SMRs) for all-cause and cause-specific mortality in people with SMI drawn from linked primary and secondary care populations compared to the general population. SMRs were calculated using the indirect method for a United Kingdom population of almost four million between 2004-2013. The all-cause SMR was higher in the cohort identified from secondary care hospital admissions (SMR: 2.9; 95% CI: 2.8-3.0) than from primary care (SMR: 2.2; 95% CI: 2.1-2.3) when compared to the general population. The SMR for the combined cohort was 2.6 (95% CI: 2.5-2.6). Cause specific SMRs in the combined cohort were particularly elevated in those with SMI relative to the general population for ill-defined and unknown causes, suicide, substance abuse, Parkinson’s disease, accidents, dementia, infections and respiratory disorders (particularly pneumonia), and Alzheimer’s disease. Solely hospital admission based studies, which have dominated the literature hitherto, somewhat over-estimate premature mortality in those with SMI. People with SMI are more likely to die by ill-defined and unknown causes, suicide and other less common and often under-reported causes. Comprehensive characterisation of mortality is important to inform policy and practice and to discriminate settings to allow for proportionate interventions to address this health injustice

    Measurement of event shape distributions and moments in e+e- -> hadrons at 91-209 GeV and a determination of alpha_s

    Full text link
    We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).Comment: 63 pages 26 fi

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
    • …
    corecore