199 research outputs found

    The use of fusion/real time centers by law enforcement

    Get PDF
    Discusses the use of fusion centers as a way to effectively gather, analyze and share information among law enforcement agencies

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. © 2021 The Authors. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Lance Lloyd" is provided in this record*

    Examples of Gaussian cluster computation

    Get PDF
    We give simple examples that illustrate the principles of one-way quantum computation using Gaussian continuous-variable cluster states. In these examples, we only consider single-mode evolutions, realizable via linear clusters. In particular, we focus on Gaussian single-mode transformations performed through the cluster state. Our examples highlight the differences between cluster-based schemes and protocols in which special quantum states are prepared off-line and then used as a resource for the on-line computation.Comment: 15 pages, 3 figure

    Estuary environmental flows assessment methodology for Victoria

    Full text link
    This report sets out a method to determine the environmental water requirements of estuaries in Victoria. The estuary environmental flows assessment method (EEFAM) is a standard methodology which can be applied consistently across Victorian estuaries.The primary objective of EEFAM is to define a flow regime to maintain or enhance the ecological health of an estuary. The method is used to inform Victorian water resource planning processes.The output of EEFAM is a recommended flow regime for estuaries. This recommendation is developed from the known dependence of the estuary’s flora, fauna, biogeochemical and geomorphological features on the flow regime. EEFAM is an evidence-based methodology. This bottom-up or ‘building block’ approach conforms to the asset-based approach of the Victorian River Health Strategy and regional river health strategies.EEFAM is based on and expands on FLOWS, the Victorian method for determining environmental water requirements in rivers. The list of tasks has been modified and re-ordered in EEFAM to reflect environmental and management issues specific to estuaries. EEFAM and FLOWS can be appliedsimultaneously to a river and its estuary as part of a whole-of-system approach to environmental flow requirements. Like the FLOWS method, EEFAM is modular, and additional components can be readily incorporated

    Non-Gaussian states for continuous variable quantum computation via Gaussian maps

    Get PDF
    We investigate non-Gaussian states of light as ancillary inputs for generating nonlinear transformations required for quantum computing with continuous variables. We consider a recent proposal for preparing a cubic phase state, find the exact form of the prepared state and perform a detailed comparison to the ideal cubic phase state. We thereby identify the main challenges to preparing an ideal cubic phase state and describe the gates implemented with the non-ideal prepared state. We also find the general form of operations that can be implemented with ancilla Fock states, together with Gaussian input states, linear optics and squeezing transformations, and homodyne detection with feed forward, and discuss the feasibility of continuous variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure

    A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. In this paper, we first present an overview of these methods with an emphasis on their computational efficiency. We then compare eight commonly used linear time complexity initialization methods on a large and diverse collection of data sets using various performance criteria. Finally, we analyze the experimental results using non-parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular initialization methods often perform poorly and that there are in fact strong alternatives to these methods.Comment: 17 pages, 1 figure, 7 table

    Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    Get PDF
    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.Comment: 5 pages, 4 figure

    Continuous Variable Quantum Cryptography using Two-Way Quantum Communication

    Full text link
    Quantum cryptography has been recently extended to continuous variable systems, e.g., the bosonic modes of the electromagnetic field. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. Such protocols have shown the possibility of reaching very high secret-key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. In this general scenario we show a "hardware solution" for enhancing the security thresholds of these protocols. This is possible by extending them to a two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other with the chance of a non-trivial superadditive enhancement of the security thresholds. Such results enable the extension of quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe

    Disease-driven Reduction in Human Mobility Influences Human-Mosquito Contacts and Dengue Transmission Dynamics

    Get PDF
    Heterogeneous exposure to mosquitoes determines an individual’s contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual’s positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual’s biting suitability and the number of mosquitoes in their home (\u3e10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers
    • …
    corecore