22 research outputs found
Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.
BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK
Reduction in Fracture Rate and Back Pain and Increased Quality of Life in Postmenopausal Women Treated with Teriparatide: 18-Month Data from the European Forsteo Observational Study (EFOS)
The European Forsteo Observational Study was designed to examine the effectiveness of teriparatide in postmenopausal women with osteoporosis treated for up to 18 months in normal clinical practice in eight European countries. The incidence of clinical vertebral and nonvertebral fragility fractures, back pain, and health-related quality of life (HRQoL, EQ-5D) were assessed. Spontaneous reports of adverse events were collected. All 1,648 enrolled women were teriparatide treatment-naive, 91.0% of them had previously received other anti-osteoporosis drugs, and 72.8% completed the 18-month study. A total of 168 incident clinical fractures were sustained by 138 (8.8%) women (821 fractures/10,000 patient-years). A 47% decrease in the odds of fracture in the last 6-month period compared to the first 6-month period was observed (P < 0.005). Mean back pain VAS was reduced by 25.8 mm at end point (P < 0.001). Mean change from baseline in EQ-VAS was 13 mm by 18 months. The largest improvements were reported in the EQ-5D subdomains of usual activities and pain/discomfort. There were 365 adverse events spontaneously reported, of which 48.0% were considered related to teriparatide; adverse events were the reason for discontinuation for 79 (5.8%) patients. In conclusion, postmenopausal women with severe osteoporosis who were prescribed teriparatide in standard clinical practice had a significant reduction in the incidence of fragility fractures and a reduction in back pain over an 18-month treatment period. This was associated with a clinically significant improvement in HRQoL. Safety was consistent with current prescribing information. These results should be interpreted in the context of the open-label, noncontrolled design of the study
Diagnosis and management of bone fragility in diabetes: an emerging challenge
Fragility fractures are increasingly recognized as a complication of both type 1 and type 2 diabetes, with fracture risk that increases with disease duration and poor glycemic control. Yet the identification and management of fracture risk in these patients remains challenging. This review explores the clinical characteristics of bone fragility in adults with diabetes and highlights recent studies that have evaluated bone mineral density (BMD), bone microstructure and material properties, biochemical markers, and fracture prediction algorithms (i.e., FRAX) in these patients. It further reviews the impact of diabetes drugs on bone as well as the efficacy of osteoporosis treatments in this population. We finally propose an algorithm for the identification and management of diabetic patients at increased fracture risk
Visualizing intermolecular interactions in T cells
The use of appropriate fluorescent proteins has allowed the use of FRET microscopy for investigation of intermolecular interactions in living cells. This method has the advantage of both being dynamic and of working at the subcellular level, so that the time and place where proteins interact can be visualized. We have used FRET microscopy to analyze the interactions between the T cell antigen receptor and the coreceptors CD4 and CD8. This chapter reviews data on how these coreceptors are recruited to the immunological synapse, and how they interact when the T cell is stimulated by different ligands