357 research outputs found

    Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex

    No full text
    Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two hormone groups are cell type specific

    Global parameter identification of stochastic reaction networks from single trajectories

    Full text link
    We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell--cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation, and efficient exact stochastic simulation algorithms that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems Biology

    Aperture synthesis for gravitational-wave data analysis: Deterministic Sources

    Get PDF
    Gravitational wave detectors now under construction are sensitive to the phase of the incident gravitational waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider the problem of aperture synthesis in the special case of a search for a source whose waveform is known in detail: \textit{e.g.,} compact binary inspiral. We derive the likelihood function for joint output of several detectors as a function of the parameters that describe the signal and find the optimal matched filter for the detection of the known signal. Our results allow for the presence of noise that is correlated between the several detectors. While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact, appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character. The analysis described here stands in distinction to ``coincidence analyses'', wherein the data from each of several detectors is studied in isolation to produce a list of candidate events, which are then compared to search for coincidences that might indicate common origin in a gravitational wave signal. We compare these two analyses --- optimal filtering and coincidence --- in a series of numerical examples, showing that the optimal filtering analysis always yields a greater detection efficiency for given false alarm rate, even when the detector noise is strongly non-Gaussian.Comment: 39 pages, 4 figures, submitted to Phys. Rev.

    Tracking tracer motion in a 4-D electrical resistivity tomography experiment

    Get PDF
    A new framework for automatically tracking subsurface tracers in electrical resistivity tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting and updating a state model representing its movements. Observations for the Kalman filter are gathered using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an ERT image sequence to detect the tracer at each time step. The application of the framework to the results of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual intervention

    Mathematical modelling of polyamine metabolism in bloodstream-form trypanosoma brucei: An application to drug target identification

    Get PDF
    © 2013 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis article has been made available through the Brunel Open Access Publishing Fund.We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.The work was carried out under a PhD programme partly funded by Prof. Ray Welland, School of Computing Science, University of Glasgo

    An iterative identification procedure for dynamic modeling of biochemical networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models provide abstract representations of the information gained from experimental observations on the structure and function of a particular biological system. Conferring a predictive character on a given mathematical formulation often relies on determining a number of non-measurable parameters that largely condition the model's response. These parameters can be identified by fitting the model to experimental data. However, this fit can only be accomplished when identifiability can be guaranteed.</p> <p>Results</p> <p>We propose a novel iterative identification procedure for detecting and dealing with the lack of identifiability. The procedure involves the following steps: 1) performing a structural identifiability analysis to detect identifiable parameters; 2) globally ranking the parameters to assist in the selection of the most relevant parameters; 3) calibrating the model using global optimization methods; 4) conducting a practical identifiability analysis consisting of two (<it>a priori </it>and <it>a posteriori</it>) phases aimed at evaluating the quality of given experimental designs and of the parameter estimates, respectively and 5) optimal experimental design so as to compute the scheme of experiments that maximizes the quality and quantity of information for fitting the model.</p> <p>Conclusions</p> <p>The presented procedure was used to iteratively identify a mathematical model that describes the NF-<it>κ</it>B regulatory module involving several unknown parameters. We demonstrated the lack of identifiability of the model under typical experimental conditions and computed optimal dynamic experiments that largely improved identifiability properties.</p

    Rate of convergence of truncated stochastic approximation procedures with moving bounds

    Get PDF
    The paper is concerned with stochastic approximation procedures having three main characteristics: truncations with random moving bounds, a matrix valued random step-size sequence, and a dynamically changing random regression function. We study convergence and rate of convergence. Main results are supplemented with corollaries to establish various sets of sufficient conditions, with the main emphases on the parametric statistical estimation. The theory is illustrated by examples and special cases.Comment: 30 page

    Sparse, interpretable and transparent predictive model identification for healthcare data analysis

    Get PDF
    Data-driven modelling approaches play an indispensable role in analyzing and understanding complex processes. This study proposes a type of sparse, interpretable and transparent (SIT) machine learning model, which can be used to understand the dependent relationship of a response variable on a set of potential explanatory variables. An ideal candidate for such a SIT representation is the well-known NARMAX (nonlinear autoregressive moving average with exogenous inputs) model, which can be established from measured input and output data of the system of interest, and the final refined model is usually simple, parsimonious and easy to interpret. The performance of the proposed SIT models is evaluated through two real healthcare datasets

    Southern Ocean deep convection as a driver of Antarctic warming events

    Get PDF
    Simulations with a free-running coupled climate model show that heat release associated with Southern Ocean deep convection variability can drive centennial-scale Antarctic temperature variations of up to 2.0 °C. The mechanism involves three steps: Preconditioning: heat accumulates at depth in the Southern Ocean; Convection onset: wind and/or sea-ice changes tip the buoyantly unstable system into the convective state; Antarctic warming: fast sea-ice–albedo feedbacks (on annual–decadal timescales) and slow Southern Ocean frontal and sea-surface temperature adjustments to convective heat release (on multidecadal–century timescales) drive an increase in atmospheric heat and moisture transport toward Antarctica. We discuss the potential of this mechanism to help drive and amplify climate variability as observed in Antarctic ice-core records
    corecore