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Abstract

We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the
causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete
metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the
basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations.
We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined.
Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system.
Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent
predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and
measured data reported in various experimental conditions shows that the model has good applicability in spite of there
being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was
assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT)
and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to
other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were
also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different
chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis
via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic
strategy.
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Introduction

The development of drugs to combat human African trypano-

somiasis (HAT) has become a major public concern due to

toxicity, inefficacy and availability problems with current drug

treatments [1,2]. Identification of potential drug targets within the

T. brucei parasite is an invaluable tool for designing chemother-

apeutic agents against the disease. A challenge in drug design

arises from the similarity of metabolic pathways in parasitic

protozoa and their mammalian hosts, resulting in toxicity to the

host as well as the parasite. Anti-parasitic drugs that are efficient,

non-toxic and affordable are urgently required.

Polyamines are ubiquitous cellular components that are

essential for cell growth and division. Polyamine metabolism in

mammalian cells has previously been studied using mathematical

modelling [3]. Polyamine metabolism in T. brucei has a number of

key features that distinguish it from polyamine metabolism in

mammals. The major differences lie in the specificity of

metabolites and enzymes as well as the associated regulation

patterns. Most notably, the enzyme s-adenosylmethionine decar-

boxylase (AdoMetDC) is activated through dimerisation with an

enzymatically inactive homologue termed prozyme. Moreover,

spermidine (Spd), in addition to its plethora of other cellular roles

(e.g. serving as an important inducer for the compact form of

DNA), in trypanosomatids, is linked to two molecules of

glutathione to yield the redox active metabolite trypanothione,

T(SH)2, which is a compound critical for trypanosome viability

and virulence.

Trypanosomes are sensitive to inhibition of the polyamine

pathway. For example, it has been shown that trypanosomes

depend on Spd for growth and survival, which ceases when the

level of Spd drops below a certain threshold [4]. There is therefore

considerable therapeutic potential in compounds that disrupt

polyamine biosynthesis. The suicide inhibitor eflornithine (difluor-

omethylornithine, DFMO) kills trypanosomes by irreversibly

interacting with ornithine decarboxylase (ODC) leading to

diminished polyamine levels. DFMO is now the first line treatment

used in HAT therapy. Inhibitors of AdoMetDC [5] have also been
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shown to be potently trypanocidal. These features have ensured

that the polyamine pathway in T. brucei has been subject to

investigation and details are available for enough of the enzymes to

allow a mathematical model to be constructed. A recent attempt to

model trypanothione (T(SH)2) metabolism in Trypanosoma cruzi (T.

cruzi) [6] also points to the value in modelling of this branch of

metabolism in trypanosomatids.

Dynamic behaviour of complex biological systems is not

deduced easily from collective descriptions of its individual parts,

requiring instead a systematic approach with advanced computa-

tional technology. Mathematical modelling offers a route to

achieve a system-level understanding [7,8]. In the context of

biological systems, mathematical models of metabolism allow

improved understanding of the contribution of individual enzymes

to the larger system. This can be achieved by studying the rates at

which system components interact and physical laws that govern

the reactions. Good models enable interpretation and predictions

about the consequences of pathway perturbation that can

supplement or even replace in vivo or in vitro experiments. Without

a reliable model, it is difficult to elucidate how complex properties

of dynamic systems arise from nonlinear enzymatic interactions.

In this paper, we develop the first kinetic model of polyamine

metabolism in blood-stream form T. brucei, derived from published

information related to system components and their interactions.

We are interested in seeking a model to reproduce what has

already been observed and also to make predictions about the

system to suggest future experiments and guide drug design. Since

mathematical models are manipulable, the mechanisms underly-

ing the metabolic regulation of polyamine biosynthesis can be

evaluated in silico. This kinetic model aims at understanding the

effectiveness of the anti-trypanosomal drug DFMO in detail and

examining other polyamine enzymes as potential targets for anti-

trypanosomal chemotherapy.

Results

As this is the first model of polyamine metabolism in T. brucei,

we shall summarise the main points from the the model design

procedure before presenting the simulation results of the kinetic

model. More details on the construction of the model are given

under Materials and Methods.

A detailed schematic representation of the trypanothione

metabolic network is depicted in Figure 1. This diagram indicates

the complex interconnections between the main pathways,

composed in parallel, which comprise the network. These are

the polyamine biosynthetic pathway for the production of Spd, the

glutathione biosynthetic pathway for the production of glutathione

and pentose phosphate pathway for the production of NADPH

mediating the reduced trypanothione redox cycle from oxidised

trypanothione disulfide. Spermine, which is a critical polyamine in

mammalian cells, is not taken into account due to its negligible

role in T. brucei [9–12]. Here we study the contribution of the

polyamine biosynthetic pathway to regulation of the total

trypanothione contents (the summation of both reduced and

oxidised trypanothione, TSHtot for short). In T. brucei the lack of a

classical arginase [13] has led to the identification of ornithine

(Orn) uptake from blood as the main mechanism to accumulate

this metabolite, serving as the only source for intracellular Orn in

our model. Metabolites and enzymes constituting the polyamine

pathway are emphasised with bold type in Figure 1.

Model development involved converting the reaction scheme of

interest in Figure 1 into a set of ordinary differential equations

(ODEs). In our model the polyamine biosynthetic pathway is

described mathematically by eight ODEs, which associate the

changes in concentration levels of system components with the rate

equations of enzymatic reactions involved. Some practical

considerations had to be taken into account when designing the

structure of the model in order to study this pathway in isolation

from the entire network.

Michaelis-Menten kinetics (for one substrate) has been used to

model enzymatic velocities of the MTA recycling enzyme

(MetRcy) and the transporter of exogenous Met (MetPt).

Michaelis-Menten kinetics with two substrates (rapid equilibrium

random bi-bi mechanisms) has been applied for the enzymes SpdS

and MAT. More complex mechanisms have been employed for

ODC, exogenous Orn uptake (OrnPt), AdoMetDC, TSHSyn and

TSHCpt to which standard Michaelis-Menten kinetics are not

sufficient to explain their behaviour. By comparing experimental

data with model predictions, we iteratively refined the mathemat-

ical representations of enzyme kinetics to render the model

satisfactory.

The incomplete knowledge of parameter values makes param-

eter estimation a necessary step prior to dynamic simulations. In

our study, simultaneous fitting against both the physiological

steady state and in vivo DFMO-mediated polyamine inhibition

reported by Fairlamb et al. [11] was applied to tune the unknown

parameters of the given model structure. DFMO-induced

perturbation is the most comprehensive data source available for

training the model (inhibition profiles being given for 6 out 8

metabolites of the pathway in T. brucei). Gene perturbation

measurements on ODC [14], SpdS [14,15], prozyme [16],

AdoMetDC [16,17] and trypanothione synthetase [18], which

were not used for training the model, are then employed as

validation data to evaluate the given model structure.

It is important to point out that this modelling activity is not

only challenged by the lack of prior knowledge, i.e. several kinetic

parameters are absent, but also by the fact that experimental

observations involve different trypanosome strains grown in

different conditions - work by Fairlamb et al. was from

trypanosomes grown in rats whilst other gene-perturbation

experiments involved in vitro cultivated strains. Inevitably,

therefore, absolute quantification of metabolite levels which is

strain and growth condition sensitive cannot emerge from such

limited studies, although the general trends in quantification are

conserved.

Model training
The ‘best’ set of parameter estimates from simultaneous fitting

against both the steady-state and DFMO-perturbed profiles is

reported in Text S1. Details on parameter estimation are given in

the Model Calibration section of Materials and Methods. Model

metabolites simulated with the ‘best’ set of parameter estimates

reached a steady state after less than the simulation time period of

two days and maintained it until the end of day 6. A good match

between steady-state levels of polyamine metabolites from model

predictions (termed the basal condition) and the reference data is

shown in Table 1. We further investigated model sensitivity to

different initial concentrations of pathway metabolites (varied by

up to +80% of the estimated initial values reported in Table S1).

We found that the behaviour of these model variants converged to

almost the same basal condition over a simulated time span of 4

days, indicating good stability (see Figure S1).

Model simulations of DMFO induction over an interval of

48 hours show good agreement with experimental data in terms of

both exact values and transient changes in the metabolite

concentrations, as shown in Figure 2. A drastic decrease of Put

was captured accompanied by a decrease in Spd. AdoMet was well

fitted, and remained unchanged as observed in [14]. This may be

Modelling of Polyamine Metabolism in T. brucei
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attributed to the fact that free-form AdoMetDC is insensitive to

the reaction product dAdoMet as indicated by the high value of

970.6 mM predicted for the product inhibition parameter, which

agrees with the hypothesis made in [19]. An increase of Orn was

observed within the first 12 hours of DFMO treatment, followed

by attainment of an accurate steady state. Dynamics of TSHtot

was also well captured compared with the measurements reported

for the reduced trypanothione. Note that when plotting the time

course of polyamines under perturbed conditions, the basal

condition acts as the initial status for the simulation of DFMO-

treated model, which also applies to model simulation under other

perturbed conditions investigated below.

Figure 1. A detailed graphical representation of total trypanothione metabolism. Edges represent chemical conversions between model
components with arrows indicating reaction directionality. Metabolites and reactions constituting the polyamine biosynthetic pathway that are
considered in this model are emphasised with bold type, with time-variant metabolites shown in green and constant metabolites shown in pink.
Enzymes catalysing each active elementary step in the pathway are denoted with blue boxes. The remaining modules of the network shown in grey
are not modelled but help gaining an overall picture of the metabolism. Abbreviations of polyamine metabolites: Met, methionine; AdoMet, S-
adenosylmethionine; dAdoMet, decarboxylated AdoMet; MTA, methylthioadenosine; AdoHcy, S-adenosylhomocysteine; Orn, ornithine; Put,
putrescine; Spd, spermidine; TSHtot, total trypanothione; Metexg , exogenous methionine; Ornexg, exogenous ornithine. Abbreviations of intra-cellular
polyamine enzymes: MetPt, Met uptake enzyme; MAT, AdoMet synthase; AHS, methyltransferase; AdoMetDC, AdoMet decarboxylase; MetRcy, Met
recycling enzyme; OrnPt, Orn uptake enzyme; ODC, Orn decarboxylase; SpdS, Spd synthase; TSHSyn, TSHtot synthesis catalyst; TSHCpt, TSHtot

consumption catalyst.
doi:10.1371/journal.pone.0053734.g001

Table 1. Basal condition of polyamine concentrations.

Met AdoMet dAdoMet Orn Put MTA Spd TSHtot

from Model (mM) 3341.5 20.3 26.2 86.2 180.7 20 2049 340

from refs. (mM) [11] 3978 19 9 43 517 20 2069 340

doi:10.1371/journal.pone.0053734.t001
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Model validation
Comparison between model predictions using estimated

parameter values and independent data sets obtained from distinct

states of the system allows assessment of model use. To this end,

data from available drug treatment and gene-knockdown pertur-

bation experiments on ODC [14], SpdS [14,15], prozyme [16],

AdoMetDC [16,17] and trypanothione synthetase [18] are used as

validation data. When simulating the model for each of the

perturbation experiments, the wild-type value of the maximum

velocity for each individual enzyme (VE
max with E representing the

specific enzyme name) is replaced with an exponential decay

function of the form of VE
max

:e{lE
:t in the corresponding rate

equations, which aims to mimic the inhibition of individual

enzymes over time (t). An exponential decay constant, lE , was

derived for individual instances by parameter fitting according to

the given inhibitory profiles of corresponding enzymes. For all

other kinetic parameters, the values were fixed at those reported in

Text S1.

Model predictions on the consequences of ODC
knockdown

DFMO is used to treat HAT and acts by inhibiting ODC with

knock on effects on polyamine production, for example, reducing

Put and Spd. As shown in Figure 3, our model replicated the

reduction in concentrations of Put, Spd and TSHtot over 48 hours

of model simulation where ODC activity is reduced by 90% within

24 hours of induction (as specified in [14]). dAdoMet serves to

provide the aminopropyl group in Spd production which

accumulates dramatically, while AdoMet is unchanged as reported

in [14].

Model predictions on the consequences of SpdS
knockdown

Spd plays multiple roles in trypanosomes including a critical

role in producing the redox reactive thiol metabolite trypa-

nothione (T(SH)2), which underlines the sensitivity of trypano-

somes to the loss of Spd through reduced capability to maintain

cellular redox. SpdS has been validated as a potential drug target

in T. brucei [14,15]. Xiao et al. [14] observed that after 6 days of

RNAi-mediated Spd depletion (SpdS activity knocked down by

90% within 2 days of induction), Spd and T(SH)2 decreased to

20% and 5% of the uninduced controls. Our model predicted a

similar trend in changes in concentrations, namely that Spd and

TSHtot are reduced to 17% and 6% of the controls, as shown in

Figure 4C and Figure 4D. No significant changes were found for

AdoMet and our model predicted this as well for this metabolite

(see Figure 4A).

Figure 2. Time-series simulation of DFMO effects on polyamine levels compared with experimental data. Lines without symbols, model
predictions; lines with symbols, experimental observations from [11]. The maximum velocity of ODC was modelled as a time-dependent variable, with
the activity decreased by more than 99% within 12-hour of treatment with DFMO. AdoMet dynamics observed by Xiao et al. [14] were adopted. Error
bars are presented where appropriate data was available in the original papers.
doi:10.1371/journal.pone.0053734.g002
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Put is an interesting metabolite regarding its response to SpdS

down-regulation. Xiao et al. reported a 45% decrease in Put

concentration over 3 days after SpdS depression. Taylor et al. [15]

also showed that, within 3 days, repressing SpdS to just 5%

compared to wild type caused a 60% decline in Spd contents but,

unexpectedly, no significant build up of Put was found. In T. brucei

therefore, cellular overproduction of Put is avoided, possibly as

excessive Put can elicit oxidative stress as reported in mammalian

cells [20,21].

One refinement we made during the model building procedure

was to introduce a term reflecting the plausible regulation of SpdS

on ODC activity (defined in Equation 1 in the Model Descriptions

section of Materials and Methods) which serves to prevent

excessive Put accumulation in the case of SpdS perturbation, as

demonstrated in Figure 4B. We observed that when this term is

removed from the model while keeping the remaining parameters

unchanged, a 90% knockdown of SpdS leads to a dramatic

buildup in Put level (see Text S4). Inclusion of this regulatory term

enables the model to simulate experimental observations. It will

now be of interest to determine the biological basis of this

regulation.

Model predictions on the consequences of AdoMetDC
knockdown and prozyme knockout

AdoMetDC has already been validated as a drug target in T.

brucei. Loss of AdoMetDC or prozyme was observed to lead to

decreases in Spd and T(SH)2 and to cell death [16]. In our model,

simulations of prozyme knockout (over a simulated time span of 4

days with a complete removal of the ligand-binding form of

AdoMetDC) and AdoMetDC knockdown (over a simulated time

span of 6 days with a 70% down-regulation of total AdoMetDC

concentration within 2 days of induction, as specified in [16]) both

resulted in a large increase in Put levels and substantial reduction

in Spd and TSHtot. Simulation of the time-dependent effects on

polyamine levels of Put, Spd and TSHtot, induced by AdoMetDC

knockdown and complete prozyme knockout are reported in

Figure 5A–5C. An 80% reduction due to prozyme knockout

versus 65% reduction from AdoMetDC knockdown for Spd and a

94% reduction due to prozyme knockout versus 70% reduction

from AdoMetDC knockdown for TSHtot, were seen. These results

are in good agreement with the tendencies described by real

experimental observations [16].

We further compared the resulting TSHtot content when the

same degree of inhibition (70% knockdown applied to total

AdoMetDC concentration) was applied to ODC. Our model

predicted a relatively lower TSHtot level at the end of the

Figure 3. Time-series simulation of ODC inhibition on polyamine levels compared with observed values. Lines without symbols, model
predictions; lines with symbols, experimental observations from [14]. The maximum velocity of ODC was modelled as a time-dependent variable
during the simulation with lE equal to 0.0016, where the ODC activity was decreased by 90% within 24 hours of RNAi induction. Error bars are
presented where appropriate data was available in the original papers.
doi:10.1371/journal.pone.0053734.g003
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simulated time span of 4 days from AdoMetDC inhibition (70%

depletion) compared with that from ODC inhibition (40%

depletion), which agrees with [17] that AdoMetDC could be a

more promising chemotherapeutic target than ODC for T. brucei.

Additionally, a 70% AdoMetDC knockdown or prozyme knock-

out caused an almost full depletion of dAdoMet accompanied by a

6-fold increase in Orn while AdoMet remained constant. These

model predictions can be verified when the relevant experimental

data is available. Our model simulations also reveal that activity of

free-form (homodimeric) AdoMetDC (VAdoMetDCO ) is 0.03% of the

activity of heterodimer AdoMetDCDprozyme (VAdoMetDCL ), which

is consistent with the experimental observations [16] that the

former is as low as v0:1% of the latter, indicating that prozyme

reacting with AdoMetDC is a limiting factor for AdoMetDC

activity.

Our model has also been validated on the consequences of

inhibiting AdoMetDC activity by a specific inhibitor MDL73811

(59- {[(Z)-4-amino-2-butenyl]methylamino}-59-deoxyadenosine).

When AdoMetDC activity was almost completely inhibited (to

2% of control value within 1 hour of administration), a modest

33% decrease in Spd was observed by 4 hours post-administration

of MDL73811 [17]. Our model predicted a similar 30% reduction

in Spd over a simulated time span of 4 hours in response to the

strong AdoMetDC down-regulation (via reducing total Ado-

MetDC enzyme concentration ½AdoMetDC�T to 2% of the

control value) and a 20% depletion in TSHtot was predicted.

Simulation results are depicted in Figure 5D.

One other refinement we made during the model construction

procedure was to present the ODC-catalysed reaction with

reversible kinetics. This implementation led Put to plateau in

response to perturbations of AdoMetDC and prozyme. However,

in the case of SpdS perturbation, simply modelling the ODC-

catalysed reaction reversibly (without the addition of the postulat-

ed regulation between SpdS and ODC) indeed helped to alleviate

excessive accumulation of Put, but a 20-fold increase in Put

contents was still observed over a simulated time span of 6 days,

indicating that the additional regulation of SpdS on ODC is

essential regardless in this case. Refer to Text S4 for more details.

Model predictions on the consequences of TSHSyn
knockdown

Trypanothione synthase (TryS), which catalyses production of

the reduced trypanothione, T(SH)2, from Spd and glutathione

has been recognised as a good drug target for trypansomes [18]. It

has been the focus of anti-trypanosomal research, owing not only

to its significant role in trypanosomal viability but also its

capability in regulating the levels of polyamines, glutathione and

glutathione-spermidine conjugates. In our model, this enzyme is

represented as TSHSyn and a one-step production of total

trypanothione from Spd is assumed (as stated in the Model

Figure 4. Time-series simulation of SpdS inhibition on polyamine levels compared with observed values. Lines without symbols, model
predictions; lines with symbols, experimental observations from [14]. The maximum velocity of SpdS was modelled as a time-dependent variable with
lE equal to 0.0016. Error bars are presented where appropriate data was available in the original papers.
doi:10.1371/journal.pone.0053734.g004
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Descriptions section of Materials and Methods). Ariyanayagam et

al. [18] reported that, within 3 days of TryS inhibition, TryS

activity decreased 10-fold, giving rise to a 85% reduction in

T(SH)2 at the end of 8 days of RNAi induction, whereas the

reactants of the reaction, Put and Spd, are not significantly

increased. Despite the absence of glutathione in the model,

knockdown simulations of TSHSyn (following the reported

inhibitory profile of TryS) predicted a good match with the

measured concentration changes of Put (no profound changes

predicted) and T(SH)2 (a 80% decrease in total trypanothione,

TSHtot, predicted) at the end of simulation duration of 8 days

(illustrated in Figure 6).

However, our model predicted a 10-fold increase in Spd level,

which contradicts the measured dynamics. We postulate that this

may result from the exclusion of glutathione in the model, which is

found to accumulate markedly over 8 days of TryS inhibition in

our simulation study. A potential elevation in Spd levels could be

averted if it reacts with increased glutathione levels to produce

TSHtot. In the absence of quantitative inclusion of glutathione in

our model, Spd was unconstrained to be rapidly increased. We

tested this hypothesis by combining the above TSHSyn inhibition

with an increased utilisation of Spd (modelled through reduction

in Spd production rate to 5% of the uncontrolled level at the end

of 3 days). The model predicted a 30% drop in Spd accompanied

with a considerable (90%) reduction in TSHtot, supporting the

possibility that Spd levels may be regulated by the interaction with

glutathione. When adequate kinetic information becomes avail-

able regarding glutathione kinetics and intermediate metabolites in

T. brucei, integration of the polyamine model with glutathione

biosynthesis would be useful for improving quantitative predictions

on inhibition consequences.

We also examined the consequences of knockdown of TSHCpt

(catalysing the sink reaction of total trypanothione, TSHtot) and

found that inhibition of TSHCpt increased the concentration level

of total trypanothione (shown in Figure S2) but no dramatic

changes on other metabolites of the pathway were seen.

Figure 5. Time-series simulation of AdoMetDC inhibition on polyamine levels compared with observed values. Lines without symbols,
model predictions; lines with symbols, experimental observations from [16] for (A) to (C) and [17] for (D). In (A) to (C), during knockdown (KD)
simulations, total AdoMetDC concentration ([AdoMetDCT ]) was modelled as a time-dependent variable with lE equal to 0.0004 to represent the
70% activity down-regulation within 2 days of induction; during knockout (KO) simulations, the factor 1{b representing the percent of the complex
AdoMetDC|prozyme taking up the total enzyme AdoMetDC is set to zero to represent full prozyme removal. In (D), MDL effects on Put and Spd
dynamics were plotted. During the simulation, total enzyme concentration of AdoMetDC was modelled using a exponential decay function with lE

set to 0.07 to mimic a 98% knockdown within 1 hour of induction as specified experimentally. Error bars are presented where appropriate data was
available in the original papers.
doi:10.1371/journal.pone.0053734.g005
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Discussion

Sensitivity analysis
Sensitivity analysis describes changes of metabolite concentra-

tions as result of changes in model parameters. We examined

model sensitivity properties by running the model with the

maximum velocity (VE
max) of key pathway enzymes varied

independently by +10% of the nominal values. The model then

evolves to a new steady state over a simulated time span of 6 days.

Changes of maximum activities of enzyme MAT and MetPt

resulted in a global effect on the system, whereas some parameters

influenced specific metabolites; for example, changes of TSHSyn

led specifically to changes of Spd and TSHtot and the function of

TSHCpt is limited to TSHtot only. The other input to the model,

OrnPt, also showed an impact on Orn, Put and TSHtot. With this

analysis, we observed that when ODC is inhibited, Orn built up

rapidly over 2 days leading to a new steady state, which is

proportional to the degree of knockdown applied to ODC

(illustrated in Figure 7). This figure may explain why reversible

inhibitors of ODC are not successful in killing trypanosomes as the

extensive increase in Orn concentration (almost 7.5 times of the

normal Orn value) will out-compete the reversible inhibitors

interacting with ODC. The binding of the enzyme with

irreversible inhibitors can however prevent competition from the

substrate, but the inhibitors have to be sufficiently potent to cause

apparent loss of TSHtot content.

We compared the changes in TSHtot dynamics over a simulated

time span of 5 days. Individual enzymes were subject to a 90%

knockdown within 24 hours of simulation. These enzymes

included ODC, SpdS, prozyme, MAT, OrnPt, MetPt and

TSHSyn - enzymes involved in de novo synthesis of total

trypanothione. Figure 8A indicates that a 90% knockdown of

each enzymes led to decreased TSHtot, with levels dropped to less

than 10% of the unperturbed level at the end of simulation span.

MetPt, MAT, prozyme and OrnPt exhibit a much stronger

inhibitory effect on TSHtot than ODC and SpdS. TSHSyn

displayed a faster converging trajectory after 48 hours of

simulation and a more complete depletion of TSHtot than all

other enzymes.

We further analysed TSHtot concentration changes (at the end

of a simulated time span of 5 days) with respect to different

knockdown levels for individual enzymes. Figure 8B indicates that

when activity knockdown is more than 70%, TSHSyn has the

strongest inhibitory effect on TSHtot, whereas when the knock-

down is less than 70%, MAT, MetPt, Prozyme and OrnPt exert

the most effective control on TSHtot reduction. Under all

scenarios, ODC and SpdS displayed a relatively weaker inhibitory

impact on TSHtot. We observed that a 70% loss of ODC and

SpdS led to the same effect as a 60% loss of TSHSyn or a 50%

reduction of MAT, MetPt, Prozyme or OrnPt, indicating that to

achieve the same level of TSHtot depletion (70%), the knockdown

strength required for different enzymes should follow

ODC,SpdSwTSHSynwMAT ,MetPt,Prozyme,OrnPt. This

could point to the enzymes MAT, MetPt, Prozyme and OrnPt

as good potential drug targets, which result in the depletion of

TSHtot with only small perturbations.

Combination chemotherapy for T. brucei
Enzymes responsible for polyamine biosynthesis are proven

drug targets. Simulations generated by our model indicate that

strong down-regulation of individual enzymes including ODC,

prozyme, SpdS and TSHSyn lead to reductions in TSHtot levels,

demonstrated to be potential targets for drug design.

The use of mathematical models not only provides a

mechanistic understanding but can also drive new and more

effective experiments. Combination chemotherapy for African

sleeping sickness is attractive as it offers the potential for lower

doses of drugs and reduced risk of resistance emerging for

individual compounds. The additional requirements for regulatory

approval of combination therapies however makes de novo

production of combination therapies difficult, but it is worth

noting that for HAT it was possible to introduce a DFMO-

nifurtimox combination therapy (NECT) which has advantages

over DFMO monotherapy alone [22,23]. Metabolomics analysis

did not indicate a role in polyamine pathway inhibition by

nifurtimox [13], however the precedent to introduce, rapidly, a

combination partner to work alongside DFMO has been set.

Figure 6. Time-series simulation of TSHSyn inhibition on TSHtot

level compared with observed values. Lines without symbols,
model predictions; lines with symbols, experimental observations from
[18]. During the simulation, the maximum velocity of TSHSyn was
modelled as a time-dependent variable using the exponential decay
function with lE set to 0.00045. Percentage changes of Put and T(SH)2

at discrete time points over a simulated time span of 8 days were
extracted from [19] and normalised to the basal conditions of respective
metabolites. For Put, only the percentage change at the end of the
simulated time span was shown, since percentage changes for this
metabolite over other time points were not reported in [19].
doi:10.1371/journal.pone.0053734.g006

Figure 7. Orn dynamics over 2 days after ODC activity
depression. During the simulation, the maximum velocity of ODC
was modelled as a time-independent constant by multiplying the
normal value by the percentage amount.
doi:10.1371/journal.pone.0053734.g007
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Our investigation into combination therapies against T. brucei

focused on a group of enzymes (denoted as Group A) that, when

used in tandem with weak perturbation of other enzymes (denoted

as Group B), result in a similar or even more potent inhibitory

effect than when these other enzymes alone (Group B) are strongly

perturbed. Knowledge gained from this kind of combination

therapeutic schemes on how potent a compound needs to be

perturbed in order for it to be an effective drug target helps look

for alternative solutions when some enzymes cannot be strongly

inhibited. We found through model simulations that MAT and

OrnPt are good candidates to be taken as Group A enzymes. The

following section provides a detailed analysis of the results.

Studying effects of inhibiting pairs of enzymes on TSHtot, as

illustrated in Figure 9A, shows that a combination of a 70%

knockdown of enzyme MAT, prozyme or OrnPt with a weak

(10%) down-regulation of ODC produces a similar effect on

TSHtot depletion as when ODC is almost completed removed. In

conjunction with a 50% loss of MAT, prozyme or OrnPt, a weaker

TSHtot inhibition is obtained at the end of a simulated time span,

but a faster depletion rate is displayed over the first 24 hours of

inhibition than using a 90% ODC knockdown alone. A 10%

prozyme depression (Figure 9B), together with a 50% down-

regulation of MAT or OrnPt decreased TSHtot concentration to

the same level at the end of a simulated time span as when only a

50% prozyme depression was applied. In conjunction with a 70%

MAT or OrnPt down-regulation, the same 10% prozyme

knockdown decreased TSHtot to the same extent as a 90%

prozyme knockdown alone. Furthermore, combining the same

10% prozyme knockdown with a 70% loss of ODC resulted in the

same degree of TSHtot depletion as lower-level joint perturbations

(50%) with MAT or OrnPt. In individual cases, combining a 10%

knockdown of ODC or prozyme with a 70% TSHSyn inhibition

depleted TSHtot to the same amount as when the respective

enzyme is perturbed by 90%, but with a slower inhibitory

trajectory compared to combination therapies with MAT and

OrnPt.

Figure 9C and 9D support our previous conclusion that

TSHSyn and prozyme alone are capable of adequately removing

TSHtot when they are subject to a sufficiently strong deactivation.

As indicated in Figure 9C, the combination of a down-regulation

of 70% in prozyme with a 70% depression of enzyme MAT

produces the same temporal dynamics and final depletion of

TSHtot as a 90% prozyme knockdown alone. The maximum level

of TSHtot depletion occurs when prozyme (knocked down by 50%

or 70%) is combined with a more potent 90% MAT down-

regulation. Combining a 70% loss of prozyme with a medium to

strong OrnPt perturbation can lead to a similar level of TSHtot

depletion, but not as strong as exerted by MAT. In Figure 9D,

when TSHSyn is down-regulated by more than 50%, down-

regulation of MAT or OrnPt by as much as 70% is required in

tandem to obtain the same level of TSHtot depletion as a 90%

TSHSyn down-regulation alone. We observed that even though

combination therapies for TSHSyn and prozyme result in

approximately the same level of TSHtot depletion at the end of

the simulated time span, they exhibited faster inhibitory trajecto-

ries, giving rise to more TSHtot removal at earlier stages (the first

2–3 days of simulation span, see Figure 9D). In both cases,

combining a 70% knockdown of prozyme or TSHSyn with a 70%

OrnPt down-regulation led to the same final TSHtot level, but

with slower temporal dynamics than other strategies over the same

duration.

As indicated in Figure 8, MAT and MetPt knockdown both

result in almost the same depletion pattern for TSHtot. As such,

MetPt related perturbation was found to be applicable to the

perturbation experiments carried out here in the same way as

MAT. It has been verified that a constant supply of Met is

imperative for trypanosomal cell growth [24,25], supporting the

credibility of the predictions made by this model. Similarly, the

results observed for ODC are applicable to SpdS, however SpdS

displayed a better inhibitory effect than ODC (likely due to the

regulatory link predicted for the enzymes) but still not comparable

with that from MAT or OrnPt.

The combination chemotherapeutic strategy suggests that

enzymatic reactions of AdoMet production and Orn uptake,

catalysed by MAT and OrnPt, respectively, are key regulatory

points in the pathway. When used alone or in tandem with weak

down-regulation (i.e. 10%) of other enzymes, a moderate

perturbation (i.e. 50%) of MAT and OrnPt exhibited a strong

Figure 8. Studies of changes in TSHtot concentration under different perturbation scenarios. In (A) time-series TSHtot concentration
values are calculated over a simulated time span of 5 days subject to a 90% decrease in individual enzyme velocities. A 90% knockdown of AdoMetDC
enzyme concentration and a 90% prozyme knockdown were found to follow a similar pattern of TSHtot dynamics, and only prozyme inhibition is
shown. In (B) TSHtot concentration values at the end of the simulated time span (5 days) are calculated subject to various degrees of knockdown (KD)
for individual enzymes. In both figures, the percentage of TSHtot concentration under perturbed (½TSHtot�KD) and normal (½TSHtot�Nom) conditions is
plotted. In all cases, the maximum velocity of each enzyme is a time-dependent variable subject to specific inhibition within 24 hours of simulation.
doi:10.1371/journal.pone.0053734.g008
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inhibitory impact on the total trypanothione production, with the

former being more effective than the latter, in particular, when

MAT knockdown is used in conjunction with medium or strong

perturbation of prozyme and TSHSyn. The regulation of

polyamine synthesis via MAT or OrnPt is likely to be a good

chemotherapeutic target.

Relation to T. cruzi model
Our polyamine model complements a recent attempt at

modelling trypanothione (T(SH)2) metabolism in the related

parasite T. cruzi [6]. The T. cruzi model focuses on the glutathione

synthesis branch and the redox cycle of T(SH)2. Polyamine

synthesis, which is the focus of this work, is not included. Our

simulation results (Figure 8) agreed with observations made in the

T. cruzi model that at 80%–100% down-regulation, most of the

involved enzymes are found to be essential for parasite survival. In

particular, TSHSyn (TryS in the T. cruzi model) has to be inhibited

by 70% to sufficiently deplete total trypanothione contents which

is consistent between the two models.

Both studies attempt to identify promising therapeutic strategies

and this issue is viewed from the aspect that ‘‘suitable drug targets

should be enzymes for which low pharmacological inhibition have

a high impact on pathway function [6]’’. Pathway enzymes in the

T. cruzi model were ranked according to control efficiency of

individual enzyme and simultaneous inhibition of those enzymes

with top scores were recommended as being good candidates for

multi-target strategies, whereas in our T. brucei model, different

combination therapies of key pathway enzymes were simulated

and time-dependent concentration changes were measured against

total trypanothione contents (Figure 9), providing us with a direct

comparison among alternatives. We would like to take this work

further by merging these two models to evaluate the perturbation

effect on total trypanothione contents when the good targets

identified from the respective work are jointly used. However, this

is challenged considerably not only by the differences in parameter

values but also the kinetic reactions specific to individual

organisms. For example, the cysteine uptake reaction that was

not modelled in the T. cruzi model has proven to be critical for

trypanosomal survival in T. brucei [25]. Compared with T. brucei, T.

cruzi lacks ODC activity and relies on Put uptake from the

extracellular medium. Additionally, both organisms can synthesise

Spd de novo from dAdoMet and Put, but T. cruzi also has the

capability to assimilate exogenous Spd (this uptake reaction was

modelled as the only source of endogenous Spd in the T. cruzi

model). Integration of these models could further assist in gaining

Figure 9. Studies of combination chemotherapeutic regimens. Percentage of TSHtot concentration under perturbed (½TSHtot�KD, over a
simulated time span of 5 days) and normal (½TSHtot�Nom) conditions. In individual model simulations (A) and (B), a 10% enzyme knockdown (KD) of
ODC and prozyme is applied in conjunction with down-regulation of other key pathway enzymes and the simulation results from individual and
combined perturbations are compared. In (C) and (D), the inhibitory effects on TSHtot were examined for combinations of medium to strong
depression of prozyme and TSHSyn, respectively, with different levels of knockdowns of other enzymes. In all cases, the maximum velocity of each
enzyme is a time-dependent variable subject to specific inhibition within 24 hours.
doi:10.1371/journal.pone.0053734.g009
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an in-depth understanding of the overall metabolic system in

trypanosomes.

Conclusion

Here we present the first model of a second branch of

metabolism, the polyamine pathway, which can be linked to an

existing model of glycolysis via the second route of glucose

metabolism in T. brucei, the pentose phosphate pathway that

creates NADPH, which is the ultimate source of electrons required

to form the reduced trypanothione (T(SH)2) and the cell’s

primary reactive thiol species.

This mathematical model provides continuous and determinis-

tic descriptions of system dynamics by applying ODEs, which has

previously been employed to model quantitatively the glycolysis

pathway in bloodstream-form T. brucei [26]. An alternative

approach to modelling metabolic systems is via structural

modelling. Structural modelling takes the stoichiometry and

reversibility of chemical reactions as the only inputs, which is in

contrast to kinetic modelling where precise information of involved

enzymatic rate equations and associated parameter values is a

prerequisite. Structural modelling is a relatively straightforward

process and because the knowledge required for this approach is

primarily the stoichiometry of a system, the drawback is the

limited predictive power in studying system dynamics that involves

manipulating enzymatic mechanisms. Therefore, structural mod-

elling is often regarded as a precondition for kinetic modelling.

Our modelling activities focused on studying the effectiveness of

DFMO, the first line drug licensed to target stage 2 HAT. Previous

work has generated a significant amount of information regarding

the network topology and kinetic analysis of many of the

enzymatic reactions has made kinetic modelling possible. Howev-

er, parameters for a significant number of the enzymes involved in

the pathway were unknown. Therefore it was necessary to

introduce assumptions and simplifications to the pathway were

required. Qualitative knowledge of the pathway guided the

assumptions made and optimisation-enabled dynamic simulations

were used to test how assumption-containing models performed

relative to outputs measured in experiments. Discrepancies

between model simulations and experimental observations

prompted a cyclic procedure of model design. The mathematical

formulation of the model equations together with the estimated set

of parameters faithfully reproduces most experimentally measured

properties of the pathway.

The model already offers opportunities to explore new strategies

for targeting this pathway in anti-trypanosomal drug design.

Combined down-regulation of key pathway enzymes offers an

effective chemotherapeutic strategy. Combination chemothera-

peutic studies revealed that most polyamine enzymes can influence

polyamine biosynthesis, but when targeted alone, high levels of

inhibition are required to inhibit the pathway sufficiently to kill

cells. Most importantly, reactions catalysed by enzyme MAT or

OrnPt appear to be critical control points of the pathway, with

MAT being preferable to OrnPt. Moderate disruption of MAT or

OrnPt, both in isolated and joint form, led to dramatic changes in

polyamine concentrations and total trypanothione contents. Our

study also shows that prozyme and TSHSyn could be used for

multi-target therapy but only when they are potently inhibited (at

least 50% knockdown) together with similar down-regulation of

MAT or OrnPt.

In general, enzymes or metabolites identified in parasites and

known to be absent from or significantly different in the

mammalian host were ideal targets for chemotherapy. In T. brucei,

MAT is insensitive to control by product inhibition of AdoMet but

mammalian isoforms of this enzyme are highly sensitive to

AdoMet. The function of MAT in linking inhibition of polyamine

synthesis to disruption of AdoMet metabolism and the differences

of MAT in host and parasites could make this enzyme a critical

drug target. T. brucei lacks arginase and depends on efficient Orn

uptake, which makes OrnPt an especially attractive drug target.

Certainly, a valid target should not only be lethal to parasites but

also be acceptably safe for human patients in long-term clinical

usage. Therefore, these potentially good drug targets have to be

further validated in terms of the therapeutic benefit and safety.

In conclusion, it has been necessary to include multiple

assumptions and simplifications to build a model of polyamine

metabolism in T. brucei because insufficient data was available to

produce a full description. Notwithstanding, the availability of

several datasets giving measurements of metabolite levels following

pathway perturbation has enabled us to adjust assumed param-

eters and simplifications in a way that allows reasonable

simulations of measured activity. The model has then been used

to make predictions on potential co-inhibition of different enzymes

of the pathway to inform possible strategies for combination

chemotherapy and can report on possible regulatory components

of the pathway which can now be approached experimentally.

The basic model description here can be further improved as new

information becomes available in T. brucei on specific kinetic

parameters of enzymes in the pathway and measured metabolite

levels under different perturbed conditions.

Materials and Methods

Considerations for model construction
van Riel [27] argued that many attempts of computational

modelling pursue realistic large-scale complex models, but very

often simplified models are feasible and at least as valuable in

understanding the essential features of biological systems. The

following considerations were made in order to study the

polyamine pathway in isolation from the entire network as

presented in Figure 1.

Firstly, the involvement of the trans-methylation branch

(responsible for the production of cystathionine via homocysteine)

was limited to the first step describing the conversion of AdoMet

into AdoHcy (S-adenosylhomo-cysteine). As observed in [28,29],

metabolic products of trans-methylation reactions (i.e homocyste-

ine and cystathionine) are mostly secreted from trypanosomal cells,

which leave their contributions in polyamine biosynthesis and

regulation very minimal. Parasitic T. cruzi and Leishmania species

lack the enzyme of Met synthase, which catalyses the Met

production from homocysteine; however, debate remains as to

whether homocysteine can be converted to Met in T. brucei [30].

Goldberg et al. [31] also suggested that, even though homocys-

teine remethylation may exist in T. brucei, as most trans-sulfuration

metabolites are secreted from trypanosomes, any homocysteine

recycled to Met will not be significant. AdoHcy, which is toxic if

accumulated in cells [28], was also observed to remain unchanged

under perturbed conditions in T. brucei, i.e. during 36 hours of

DFMO treatment [29], and thus is treated as a constant

metabolite in our study.

Secondly, we excluded glutathione biosynthesis and related

reactions from consideration and modelled the biosynthesis of

TSHtot with a single-step reaction from Spd, catalysed by a

synthetic enzyme, named TSHSyn. In T. brucei, the reduced

trypanothione, T(SH)2, is synthesised in two steps. First, a single

molecule of Spd is combined with glutathione to generate a

glutathione-spermidine conjugate (not shown in Figure 1). This is

followed by the addition of a second glutathione creating the
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reduced trypanothione from. It has been reported that both

synthetase and amidase activity are associated with biosynthesis of

the reduced trypanothione in T. brucei [32] as well as in Leishmania

parasites [33] and Crithidia fasciculata [34]. The conflicting activities

of synthetase and amidase allow for a bidirectional response

between the involved metabolites, which may serve to modulate

intracellular levels of these metabolites without additional biolog-

ical processes (i.e protein synthesis or degradation of existing

metabolites). There is however very limited information for

enzyme kinetics of the intermediate steps of glutathione biosyn-

thesis and the regulation mechanism between synthetase and

amidase has not yet been precisely characterised in T. brucei. The

approximate description of TSHtot biosynthesis reduces the

degrees of freedom and diminishes the impact of unknowns in

the model simulations. In the rate equation of TSHSyn, a

regulatory term for the reaction product TSHtot is included to

reflect the self-regulation ability of Spd and TSHtot, as if they are

modulated by the amidase activity.

Finally, the link between TSHtot and the remaining system (i.e.

the pentose phosphate pathway in the grey box in Figure 1) was

modelled as a black box (refer to [35] for a case study). Black-box

modelling is a popular approach for modelling chemical processes

that lack physical insight or are highly abstract [36,37]. The key of

this approach is to approximate input-output dynamics of the

involved metabolites. In our work, this is the relation between Spd

(input) and trypanosomal growth (output, proportional to the

concentration of total trypanothione, TSHtot). This modelling

strategy facilitates the practical construction of a useful model of

polyamine metabolism with predictive capabilities; this can only be

achieved when all intra-cellular metabolites are modelled as time-

dependent variables. Black-box structures are parameterised

descriptions, which can be approximated in the form of, for

example, power series polynomials and fuzzy logic. In this study, a

combination of a Hill equation and a linear decay function

proportional to the concentration of TSHtot is used to model this

reaction (details are given in the Model Descriptions section of

Materials and Methods). Inclusion of total trypanothione in the

model allows us to quantify explicitly the consequences of

polyamine interruption on cell growth arrest in the context of

the model.

A summary of iterative model design
In the standard approach (see [38,39] for details), an initial

model topology that approximates the input-output relationship of

the system is constructed, and then a parameter estimation process

is applied to match a particular dataset against model structure.

Once a candidate model is built in this way, it can be tested on

validation data, i.e. data not used in the parameter estimation step.

If the estimate-containing model demonstrates predictive power it

may be considered to be relevant in describing the underlying

processes. Where inconsistency emerges between model predic-

tions and experimental observations the model is refined and

iteratively evaluated against validation data.

Following the above system identification procedure, five

candidate models were generated, which share the same topology

but differ with respect to the mathematical representations of

enzyme kinetics. Refinements made throughout model construc-

tion were summarised in Table S2, where the final model

performed the best on both the estimation data and validation

data and its description form the basis of this paper.

Model descriptions
The polyamine biosynthetic pathway is described mathemati-

cally by eight ODEs (Table 2), each of which corresponds to a

time-dependent variable metabolite. The ODE model takes

exogenous methionine (Metexg) and ornithine (Ornexg) as the only

inputs, since T. brucei does not have an efficient mechanism for the

assimilation of exogenous putrescine (Put) and Spd, and relies on

de novo synthesis to acquire these two polyamines [15,40].

Concentrations of both external (Metexg and Ornexg in blood)

and constant (AdoHcy) metabolites are fixed at their physiological

levels.

Rate equations for individual enzyme-catalysed reactions, which

are displayed on the right hand side of the ODEs, are detailed

below.

ODC catalyses the initial step in the pathway leading to Put

production from Orn. ODC has an extremely short intra-cellular

half-life in mammals, reportedly 15 min to 1 hr, which is in

contrast to the more stable protein in T. brucei, which has a

turnover rate greater than 6 hrs. The reversible rate law was

applied to model ODC kinetics in the form below, which is subject

to weak product inhibition by Put and postulated correlation of

SpdS on ODC. Due to the lack of information on these two

parameters, we assumed the half-saturation constant KODC
mPut to

have the same value as the known parameter KODC
mOrn and we

analytically derived the equilibrium constant KODC
eq from the

experimental observations of AdoMetDC RNAi induction and

prozyme knockout. Refer to Table S2 and Text S4 for more

information on these two parameters. When SpdS remains

uninduced, parameter lSpdS is zero and thereby the maximum

velocity of ODC becomes time-independent. Under SpdS

perturbations, a positive value has been deduced for parameter

lSpdS from the given inhibitory profile of SpdS deactivation to

mimic the temporal changes of SpdS activity over time and in this

case the maximum velocity of ODC becomes time-variant and

influenced by the activity changes of SpdS.

VODC~ ½Orn�{ ½Put�
KODC

eq

 !
:

VODC
max

:e
({lSpdS

:t)

KODC
mOrn

1z
½Orn�

KODC
mOrn

z
½Put�

KODC
mPut

:(1z
½Put�

KODC
iP

)

0
BBBB@

1
CCCCA ð1Þ

Table 2. Differential equations for the time-dependent
variables included in the model.

Variables Differential Equations

½Met� d½Met�
dt

~VMetPt{VMAT zVMetRcy

½AdoMet� d½AdoMet�
dt

~VMAT {VAdoMetDCT

{VAHS

½dAdoMet� d½dAdoMet�
dt

~VAdoMetDCT {VSpdS

½Orn� d½Orn�
dt

~VOrnPt{VODC

½Put� d½Put�
dt

~VODC{VSpdS

½MTA� d½MTA�
dt

~VSpdS{VMetRcy

½Spd� d½Spd�
dt

~VSpdS{VTSHSyn

½TSHtot� d½TSHtot�
dt

~VTSHSyn{VTSHCpt

doi:10.1371/journal.pone.0053734.t002
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AdoMetDC is responsible for the formation of dAdoMet, the

aminopropyl donor for the biosynthesis of Spd from Put. As is the

case for T. brucei ODC, T. brucei AdoMetDC is a stable enzyme

and has a lower turnover rate than in mammalian cells.

AdoMetDC is also a regulatory enzyme, regulated by an allosteric

mechanism with prozyme, which is an enzymatically inactive close

homologue of AdoMetDC itself. The regulation of AdoMetDC is

induced by a conformational change of the prozyme structure,

which alters the half-saturation constant of AdoMetDC activity.

Willert et al. [41] discovered that in T. brucei neither AdoMetDC

nor prozyme per se is sufficiently active to prompt normal cell

growth, and only the complex of AdoMetDC—prozyme can

maintain the physiological level of Spd. Recent work by Willert

and Phillips [16] has extended the subject to examining the

influence of AdoMetDC RNAi inhibition and prozyme knockout

on polyamine synthesis and parasite growth. A similar mechanism

of allosteric regulation was also found for T. cruzi AdoMetDC [42].

The binding of AdoMetDC with prozyme contributes to

dynamical control of metabolic fluxes in the polyamine pathway

[41]. We represent the enzyme-ligand binding between Ado-

MetDC and prozyme as a one-step conformation system, with the

plausible assumption that the ligand can interact rapidly with the

enzyme as prozyme concentration is not comparable with

AdoMetDC concentration [41], causing the reaction to occur at

a rapid equilibrating rate following linear mass action kinetics (i.e.

½E�ww½S�). Because prozyme levels are restricted, AdoMetDC is

present in trypanosomal cells in both ligand-occupied form and

free form. Accordingly, we express the velocity equation of the

total AdoMetDC as a superposition of two terms stemming from

the individual forms of the enzyme, as below. The representation

of regulatory capabilities in summation of distinct states has been

verified for allosteric enzymes in [43].

VAdoMetDCT ~VAdoMetDCLzV
AdoMetDCO ð2Þ

where

VAdoMetDCL ~kAdoPro
cat

:½AdoMetDCT �:(1{b):

½AdoMet�
KAdoPro

mAdoMet

1z
½AdoMet�

KAdoPro
mAdoMet

V
AdoMetDCO~kAdoMetDCO

cat
:½AdoMetDCT �:

b:

½AdoMet�
KAdoMetDCO

mAdoMet

1z
½AdoMet�

KAdoMetDCO

mAdoMet

z
½dAdoMet�

KAdoMetDCO

idAdoMet

z
½KAdoMetDCO

aPut
�

½Put�

In these equations, VAdoMetDCL and V
AdoMetDCO stand for the

velocity contributed by the ligand-occupied (binding with

prozyme) and free form of the enzyme, modelled as above. A

factor b represents the percent of free-form AdoMetDC

(AdoMetDCO) taking up the total enzyme concentration

(½AdoMetDCT �), thus the ligand-occupied form (AdoMetDCL)

is expressed as 1{b of the total concentration. Since the prozyme

concentration is smaller than that of AdoMetDC [16], b is

assumed to vary between 0.5 and 1 in order to reflect the

experimental observation and still allow the ligand-occupied

AdoMetDC to change within a physiologically feasible range.

Note that in the above rate equations, Put and dAdoMet have a

stimulatory and inhibitory effect respectively on the activity of free-

form AdoMetDC but not on the AdoMetDC—prozyme hetero-

dimer (the ligand-occupied form) [41]. T. brucei AdoMetDC was

thought to be insensitive to dAdoMet, which is in contrast to the

strong product inhibition exerted by its counterpart in many other

species (e.g. mammalian cells) [19]. A wide range of 1 to 1000 mM

is applied for the parameter KAdoMetDCO

idAdoMet and the estimate from in

silico simulations can be used to qualitatively assess the contradic-

tory report for this parameter.

MAT catalyses production of AdoMet from Met in the presence

of ATP. AdoMet plays an important role in a variety of cellular

functions, such as methylation and sulphuration. Polyamines are

not inhibitory to the enzyme within the range of 10 to 5000 mM,

and positive cooperativity was only realised at higher concentra-

tions of ATP with a Hill constant (nMAT) equal to 2.0 [44]. In our

model, ATP was regarded as a constant metabolite due to the lack

of knowledge on its uptake kinetics; this is supported by the recent

work [6] that the concentration of ATP stays high and constant

under stress and non-stress conditions. The enzyme velocity is

modelled in the form below, where AdoMet exerts only a weak

inhibition on MAT, which is competitive with respect to the

substrate Met.

VMAT~VMAT
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:
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SpdS catalyzes Spd biosynthesis from Put in the presence of

dAdoMet, with methylthioadenosine (MTA) as a by-product.

MTA is not detectable in mammals because of its rapid

degradation rate [3,45], which gives rise to the intra-cellular

concentration of this compound being low [46]. Since no data is

available for the physiological level of MTA in T. brucei, according

to the observation in mammalian cells, MTA is assumed to hold a

small value of 20 mM in our study. The kinetic mechanism of this

enzyme is modelled below, subject to the product inhibition

[3,47]. Note that when SpdS remains wild-type, parameter lSpdS is

0, and thereby the maximum velocity of SpdS becomes time-

independent. Under perturbed conditions, the maximum velocity

of SpdS becomes time-variant and defined in accordance with the

value of parameter lSpdS .

VSpdS~VSpdS
max

:e
({lSpdS

:t):

½Put�
K

SpdS
mP

1z
½Put�

K
SpdS
mP

z
½Spd�

K
SpdS
iD

:

½dAdoMet�
K

SpdS
mdAdoMet

1z
½dAdoMet�

K
SpdS
mdAdoMet

z
½MTA�

K
SpdS
iMTA

ð4Þ

MetRcy catalyses the synthetic transition from MTA to Met.

MTA is recycled to Met via a series of enzymatic steps in

trypanosomes [48]. It is first converted to methylthioribose-1-

phosphate by MTA phosphorylase; the latter product is then

metabolised to keto-methylthiobutyrate, and ultimately to Met

[49]. Because of the importance of MTA recycling in cell viability,

interference with Met metabolism has been explored as a potential

drug target in mammals and Plasmodium falciparum [24,50,51]. In

mammalian cells, Met can be regenerated via enzymatic catalysis

of homocysteine [50]; however debate remains as to whether

homocysteine remethylation exists in T. brucei, given that the

enzyme catalysing this chemical transition is absent in other

related parasitic species (e.g. T. cruzi and Leishmania) [30].
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In our study, the MTA recycling path is considered as the

unique source of Met reproduction, which is assumed to occur via

a single-step reaction, as kinetics for the intermediate reactions are

not known experimentally. In T. brucei, available quantitative

descriptions for the recycling path are limited to the half-saturation

constant of MTA phosphorylase with respect to its substrate MTA.

Since the enzyme has a broad substrate specificity [52], the in vivo

maximum velocity is hard to obtain, but it is assumed to hold a

very high value [53]. Again, standard Michaelis-Menten kinetics

are applied to describe the enzyme kinetics, shown below:

VMetRcy~VMetRcy
max

:

½MTA�
K

MetRcy
mMTA

1z
½MTA�

K
MetRcy
mMTA

ð5Þ

AHS catalyses the production of AdoHcy from AdoMet. The

enzyme velocity is modelled as follows, subject to strong product

inhibition by AdoHcy [54].

VAHS~VAHS
max

:

½AdoMet�
KAHS

mAdoMet

1z
½AdoMet�

KAHS
mAdoMet

z
½AdoHcy�

KAHS
iAdoHcy

ð6Þ

AdoHcy is regarded as a constant metabolite during the in silico

simulation and a methylation index of 2:1 [28] is assumed for the

ratio of [AdoMet] to [AdoHcy] under wild-type conditions

(resulting in the constraint [AdoHcy] = 0.5:[AdoMet]) to approx-

imate the relationship between the concentrations of the

metabolites.

TSHSyn denotes the synthetic enzyme catalysing one-step

TSHtot production from Spd in the model. We employed an

irreversible Hill equation (with nSyn standing for the Hill

coefficient) to model this enzyme, which is characterised by

competitive product inhibition by TSHtot, shown as follows. This

kinetic structure allows the model to mimic the in vivo state where

TSHtot levels can be compensated by elevating its production rate

during T. brucei growth interruption (via reducing TSHtot level).

VTSHSyn~VTSHSyn
max

:

½Spd�
K

TSHSyn
mSpd

 !nSyn

1z
½TSHtot�

K
TSHSyn
iTSHtot

z
½Spd�

K
TSHSyn
mSpd

 !nSyn
ð7Þ

TSHCpt denotes the sink reaction responsible for TSHtot

interactions with the remaining system, in order to prevent

unrestricted accumulation. Designing a suitable expression for this

abstract enzyme is challenging. A linear function of consumption

rate (an unknown parameter) multiplying the concentration of

total trypanothione was initially proposed as the minimum

consumption requirement; however the simulated behaviour of

TSHtot failed to reproduce either the steady-state or DFMO-

perturbed data. We refined the rate definition by adding to this

function an irreversible Hill equation representing enzyme-

catalysed breakdown of the metabolite. Due to the number of

existing unknowns, we approximated the consumption rate (in the

linear function) as the specific growth rate (m) to which the

consumption of total trypanothione is proportional in reality. This

combined expression later proved to be satisfactory for total

trypanothione, and simulations converged to the expected steady

state, with rapid consumption under perturbation conditions, as

shown below.

VTSHCpt~m:½TSHtot�{VTSHCpt
max

:

½TSHtot�
K

TSHCpt
mTSHtot

 !nCpt

1z
½TSHtot�

K
TSHCpt
mTSHtot

 !nCpt
ð8Þ

The current representations for rate equations of TSHSyn and

TSHCpt are capable of reproducing observed behaviour of total

trypanothione (TSHtot) under various experimental conditions.

These kinetic structures will inevitably be different when the

remaining metabolites in the network are integrated into this

model.

MetPt is responsible for the uptake of exogenous Met in our

model. Trypanosomes rely on a constant supply of Met, and de novo

synthesis is energetically expensive [24,25]. Standard Michaelis-

Menten kinetics are applied to model MetPt as below

VMetPt~VMetPt
max

:

½Metexg �
KMetPt

mMetexg

1z
½Metexg �

KMetPt
mMetexg

ð9Þ

OrnPt is responsible for the uptake of exogenous Orn, which is

modelled based on the reversible Michaelis-Menten kinetics.

Exogenous Orn is considered as a constant supply into the system,

with the plasma concentration assumed to be 77 mM [13].

Parameters KOrnPt
eq and KOrnPt

mP stand for the equilibrium constant

and the half-saturation constant of product Orn, respectively.

VOrnPt~(½Ornexg�{
½Orn�

KOrnPt
eq

):

VOrnPt
max

KOrnPt
mS

1z
½Ornexg �
KOrnPt

mS

z
½Orn�

KOrnPt
mP

ð10Þ

This ODE model of polyamine metabolism contains 40 kinetic

parameters, where 20 are unknown and two are solved

analytically. To ensure unit consistency of the model parameters,

we express all wild-type maximum velocities VE
max (E refers to

specific enzyme name) in units of mM per minute and hence in all

these rate equations, the derivatives of the concentrations

(d[Metabolite]/dt) are expressed in mM per minute. Some known

enzyme velocities were measured in different units, i.e. mmol per

minute per number of cells or per mg of protein, conversion of

which into the desired unit was required before carrying out model

simulations. Unit conversions are elucidated in Text S2.

Model calibration
Model calibration involves determination of model parameters

that can reproduce the system behaviour. A common procedure is

to first fit model parameters to experimental data generated by a

reference cell type (wild type) and then test the estimates on data

generated by a variation (mutant). In our study, we adopt a novel

estimation methodology - the multi-objective optimisation algo-

rithm MoPSwarm [55] - to estimate unknowns, where both the

steady-state (wild type) and the perturbed (drug treated or genetic

mutant) conditions of the pathway are handled simultaneously. It

has been demonstrated in [55] that accounting for more than one

state of the system in parameter estimation process is an

advantageous approach for obtaining reliable parameter estimates.

Modelling of Polyamine Metabolism in T. brucei

PLOS ONE | www.plosone.org 14 January 2013 | Volume 8 | Issue 1 | e53734



In this study, the model was trained via simultaneous fitting

against both the physiological steady state and DFMO-mediated

inhibition. However, corrections had to be made before the

dataset can be used. For example, AdoMet levels in trypanosomes

during ODC inhibition by DFMO treatment, were reported as

being elevated 75 times by Fairlamb et al. [11] whilst levels of this

metabolite were almost unchanged during DFMO treatment

studied by Xiao et al. [14]. The parameter estimation process was

applied to the model to match the estimated data with an

increased AdoMet concentration. Simulation results, however,

predicted that AdoMet contents were largely unchanged and all

other metabolites were well fitted. Thus, for model calibration, we

replaced AdoMet behaviour (considerably increased) in Fairlamb’s

data set with constant dynamics (as observed by Xiao et al.);

dynamics of all other metabolites in Fairlamb’s data set remained

intact.

We used the temporal changes of the reduced trypanothione,

T(SH)2, to approximate the dynamics of total trypanothione

concentration in our model. This is because in the work by

Fairlamb et al., and in all other perturbation experiments,

measurements were made for the reduced trypanothione only.

Since the reduced trypanothione exists in much higher concen-

trations than the oxidised trypanothione in T. brucei, the reduced

trypanothione is taken to represent the trends in total trypa-

nothione changes over time.

The polyamine model under steady-state (wild type) and

DFMO-treated (perturbed) conditions differ in the mathematical

representation of VODC , as the maximum velocity of ODC (VODC
max )

is a time-invariant parameter in the former case and a time-

dependent exponential decay in the latter. Uptake kinetics of

DFMO have not been measured. Despite the absence of a

quantitative description, the DFMO-induced inhibition is well

understood in a qualitative sense, where ODC activity decreased

by more than 99% within 12-hour of treatment with DFMO [11].

ODC activity in response to DFMO is therefore modelled with an

exponential decay function by multiplying the original rate

equation of ODC (Equation 1 in the Model Descriptions section

of Materials and Methods) with term e{lODC
:t to reflect the time-

dependent response of enzyme activity to the drug inhibition,

whilst remaining terms in the equation are unchanged, shown

below. Parameter lODC takes a value of 0.007 in this instance,

solved by simple curve fitting using the qualitative description.

VODC~ ½Orn�{ ½Put�
KODC

eq

 !
:

e({lODC
:t):VODC

max
:e

({lSpdS
:t)

KODC
mOrn

1z
½Orn�

KODC
mOrn

z
½Put�

KODC
mPut

:(1z
½Put�

KODC
iP

)

0
BBBB@

1
CCCCA ð11Þ

Note that in this equation parameters lODC and lSpdS correspond

to different inhibitory scenarios, namely ODC inhibition (resulting

from DFMO drug uptake or ODC enzyme perturbation) and

SpdS inhibition, respectively. It is only when ODC and SpdS

inhibition are applied in tandem that both parameters are given

non-zero values. In other words, except in SpdS-inhibited

conditions, lSpdS equals zero under both steady-state and

DFMO-induced conditions as well as all other perturbed

conditions.

In our model, initial concentrations are treated as unknown

parameters to be estimated together with the unknown kinetic

parameters. Our choices of the initial metabolite concentrations

are restricted to +20% of the measured physiological levels when

fitting the polyamine model to the given steady state. This helps

the convergence of the optimisation algorithm from random

positions in the search space. The solutions returned from the

estimation procedure are ranked according to their importance in

satisfying both pathway states using the root mean square of the

two objectives with respect to an individual state, and the best

trade-off solution with the highest rank is selected for investigation.

Details on the optimisation algorithm, the objective functions and

the ranking method used for parameter estimation and selection

are given in Text S3.
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