3 research outputs found
Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health
This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts
Multi-wavelength fiber laser via evanescent field confinement with Al<sub>2</sub>O<sub>3</sub> nanolaminate-coated thinned fiber
We present the fabrication and analysis of an Erbium-doped optical fiber laser emitting at multiple wavelengths. This is accomplished via a filter constructed from a fiber taper coated with alumina (Al2O3). The taper is created using the flame brushing induction technique with a combination of Butane (25 %) and Oxygen (75 %). The diameter is reduced to a 20 µm waist and 2 mm burner displacement. The thin film of Al2O3 was deposited via atomic layer deposition (ALD), resulting in a 15 nm layer. The coated fiber taper was then inserted into a ring fiber laser cavity functioning as a selector filter. This fiber laser produced an output comprising six simultaneous wavelengths: 1531.14, 1531.79, 1532.45, 1541.85, 1544.45, and 1562.22 nm. Laser signal stability tests were performed for one hour at 25 °C at the six emission wavelengths, resulting in a maximum optical power fluctuation of 0.15 to 0.33 dB, a wavelength shift variation of 0.02 nm, and a signal-to-noise ratio of 31.79 dB in average. The laser lines emitted have an average spectral width of 0.06 nm. Our results show that the typical performance of the fiber laser configuration based on an optical fiber taper was improved by the addition of the Al2O3 layer and can be further improved. Our findings demonstrate that the standard operation of the fiber laser setup, which utilizes an optical fiber taper, was enhanced through the incorporation of an Al2O3 layer and has the potential for further development.</p