242 research outputs found

    Error-mitigated Quantum Approximate Optimization via Learning-based Adaptive Optimization

    Full text link
    Combinatorial optimization problems are ubiquitous and computationally hard to solve in general. Quantum computing is envisioned as a powerful tool offering potential computational advantages for solving some of these problems. Quantum approximate optimization algorithm (QAOA), one of the most representative quantum-classical hybrid algorithms, is designed to solve certain combinatorial optimization problems by transforming a discrete optimization problem into a classical optimization problem over a continuous circuit parameter domain. QAOA objective landscape over the parameter variables is notorious for pervasive local minima and barren plateaus, and its viability in training significantly relies on the efficacy of the classical optimization algorithm. To enhance the performance of QAOA, we design double adaptive-region Bayesian optimization (DARBO), an adaptive classical optimizer for QAOA. Our experimental results demonstrate that the algorithm greatly outperforms conventional gradient-based and gradient-free optimizers in terms of speed, accuracy, and stability. We also address the issues of measurement efficiency and the suppression of quantum noise by successfully conducting the full optimization loop on the superconducting quantum processor. This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.Comment: Main text: 11 pages, 4 figures, SI: 5 pages, 5 figure

    Impact of Opinions and Relationships Coevolving on Self-Organization of Opinion Clusters

    Get PDF
    In a social network, individual opinions and interpersonal relationships always interact and coevolve. This continuously leads to self-organization of opinion clusters in the whole network. In this article we study how the coevolution on the two kinds of complex networks and the self-organization of opinion clusters are differently affected by the dynamic parameters, the structural parameters and the propagating parameters. It is found that the two dynamic parameters are homogeneous bringing about the strong and weak relations, while the two structural parameters are heterogeneous having equivalent relations. Moreover, the impact of the propagating parameter has been found only above its threshold

    The transport properties of Kekul\'e-ordered graphene pp-nn junctions

    Full text link
    The transport properties of electrons in graphene pp-nn junction with uniform Kekul\'e lattice distortion have been studied using the tight-binding model and the Landauer-B\"uttiker formalism combined with the nonequilibrium Green's function method. In the Kekul\'e-ordered graphene, the original KK and KK^{\prime} valleys of the pristine graphene are folded together due to the 3×3\sqrt{3} \times \sqrt{3} enlargement of the primitive cell. When the valley coupling breaks the chiral symmetry, special transport properties of Dirac electrons exist in the Kekul\'e lattice. In the O-shaped Kekul\'e graphene pp-nn junction, Klein tunneling is suppressed, and only resonance tunneling occurs. In the Y-shaped Kekul\'e graphene pp-nn junction, the transport of electrons is dominated by Klein tunneling. When the on-site energy modification is introduced into the Y-shaped Kekul\'e structure, both Klein tunneling and resonance tunneling occur, and the electron tunneling is enhanced. In the presence of a strong magnetic field, the conductance of O-shaped and on-site energy-modified Y-shaped Kekul\'e graphene pp-nn junctions is non-zero due to the occurrence of resonance tunneling. It is also found that the disorder can enhance conductance, with conductance plateaus forming in the appropriate range of disorder strength. The ideal plateau value is found only in the Kekul\'e-Y system.Comment: 8 pages, 7 figure

    Optimized sample preparation for two-dimensional gel electrophoresis of soluble proteins from chicken bursa of Fabricius

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional gel electrophoresis (2-DE) is a powerful method to study protein expression and function in living organisms and diseases. This technique, however, has not been applied to avian bursa of Fabricius (BF), a central immune organ. Here, optimized 2-DE sample preparation methodologies were constructed for the chicken BF tissue. Using the optimized protocol, we performed further 2-DE analysis on a soluble protein extract from the BF of chickens infected with virulent avibirnavirus. To demonstrate the quality of the extracted proteins, several differentially expressed protein spots selected were cut from 2-DE gels and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).</p> <p>Results</p> <p>An extraction buffer containing 7 M urea, 2 M thiourea, 2% (w/v) 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), 50 mM dithiothreitol (DTT), 0.2% Bio-Lyte 3/10, 1 mM phenylmethylsulfonyl fluoride (PMSF), 20 U/ml Deoxyribonuclease I (DNase I), and 0.25 mg/ml Ribonuclease A (RNase A), combined with sonication and vortex, yielded the best 2-DE data. Relative to non-frozen immobilized pH gradient (IPG) strips, frozen IPG strips did not result in significant changes in the 2-DE patterns after isoelectric focusing (IEF). When the optimized protocol was used to analyze the spleen and thymus, as well as avibirnavirus-infected bursa, high quality 2-DE protein expression profiles were obtained. 2-DE maps of BF of chickens infected with virulent avibirnavirus were visibly different and many differentially expressed proteins were found.</p> <p>Conclusion</p> <p>These results showed that method C, in concert extraction buffer IV, was the most favorable for preparing samples for IEF and subsequent protein separation and yielded the best quality 2-DE patterns. The optimized protocol is a useful sample preparation method for comparative proteomics analysis of chicken BF tissues.</p

    SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model

    Get PDF
    BackgroundCentral sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway.MethodsInflammatory soup was repeatedly administered to male Sprague–Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT–PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining.ResultsAfter repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1.ConclusionThe results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants

    Model test study on bearing effect prestressing anchors in shallow buried tunnels

    Get PDF
    The use of prestressing anchor active support technology in tunnel engineering is becoming morecommon.However, the support characteristics and mechanism of action have not been fully understood for shallow, large-span rocky tunnels.In order to investigate the bearing characteristics of the surrounding rock under the prestressed anchor support system, a concealed excavation station of Qingdao Metro Line 6 was used as the engineering background, and based on the similarity principle of formulating experimental materials for stratum and support structure modelling, the bearing characteristics of the anchors under the prestressed anchor and ordinary anchor support were investigated by hydraulic loading tests.The results indicate that: ① The interaction between prestressed anchors and the surrounding rock creates a load-bearing anchor solid that can effectively support most of the overlying loads.The application of prestressed anchors during the overburden loading process increased the warning load value of tunnel instability damage by 42.8% and the ultimate load value by 41.2%.② The overburden loading process involved the prestressing anchors going through the tight anchorage load holding stage and the de-anchorage unloading stage.Simultaneously, the lining underwent the strain accumulation stage, strain surge stage, and strain release stage during the overlay loading process.③ The prestressed anchor under active support has better force synergy with the rock body than an ordinary anchor, without the axial force mutation phenomenon.This allows the support performance of the anchor to be fully utilized.Additionally, the prestressed active support effectively inhibits the development of fissures and significantly improves the overall stability of the tunnel

    The bidirectional relationship between sarcopenia and disability in China: a longitudinal study from CHARLS

    Get PDF
    ObjectivesSarcopenia and disability represent significant concerns impacting the health of older people. This study aimed to explore the bidirectional relationship between sarcopenia and disability in Chinese older people.MethodsThis study recruited older people ≥60 years old from the China Health and Retirement Longitudinal Study. In phase I, the study analyzed the relation between disability and subsequent sarcopenia using multinomial logistic regression models. Conversely, in phase II, the study assessed whether sarcopenia was associated with future disability using binary logistic regression models.ResultsIn phase I, 65 (16.80%) new cases of possible sarcopenia, 18 (4.65%) cases of sarcopenia, and 9 (2.33%) cases of severe sarcopenia were observed in the disabled older people and 282 (10.96%) new cases of possible sarcopenia, 97 (3.77%) cases of sarcopenia, 35 (1.36%) cases of severe sarcopenia were observed in the older people without disability. The OR (95% CI) for sarcopenia in older disabled individuals compared to those without disability was 1.61 (1.25–2.07). Adjusting for all covariates in 2011, the OR (95% CI) value for disabled individuals vs. those without disability was 1.35 (1.02–1.79). Subgroup analyses showed that disabled participants aged &lt; 80 years were more likely to have sarcopenia (OR = 1.42, 95% CI: 1.07–1.89), and the risk of sarcopenia did not differ significantly between sex subgroups. In phase II, 114 cases (33.83%) in the possible sarcopenia patients, 85 cases (28.91%) in the sarcopenia patients, 23 cases (35.94%) in the severe sarcopenia patients, and 501 cases (16.10%) in the individuals without sarcopenia showed symptoms of disability. The OR (95% CI) for disability was 2.66 (2.08–3.40) in the possible sarcopenia patients, 2.12 (1.62–2.77) in the sarcopenia patients, and 2.92 (1.74–4.91) in the severe sarcopenia patients compared with the no sarcopenia patients. After adjusting for all covariates in 2011, the OR (95% CI) values were 2.21 (1.70–2.85) in the possible sarcopenia patients, 1.58 (1.14–2.19) in the sarcopenia patients, and 1.99 (1.14–3.49) in the severe sarcopenia patients, as compared to the older people without sarcopenia. Subgroup analyses showed that compared with men, women with possible sarcopenia had a higher risk of disability (OR = 2.80, 95% CI: 1.98–3.97). In addition, participants aged &lt; 80 years with sarcopenia or severe sarcopenia s were more likely to have disability (OR = 2.13, 95% CI: 1.52–2.98; OR = 2.98, 95% CI: 1.60–5.54).ConclusionThe occurrence of disability increase the risk of sarcopenia in the older people, and baseline sarcopenia predicts the future disability in older people

    Super-multiplex vibrational imaging

    Get PDF
    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure–function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems
    corecore