290 research outputs found

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Discovery and identification of potential biomarkers of papillary thyroid carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid carcinoma is the most common endocrine malignancy and a common cancer among the malignancies of head and neck. Noninvasive and convenient biomarkers for diagnosis of papillary thyroid carcinoma (PTC) as early as possible remain an urgent need. The aim of this study was to discover and identify potential protein biomarkers for PTC specifically.</p> <p>Methods</p> <p>Two hundred and twenty four (224) serum samples with 108 PTC and 116 controls were randomly divided into a training set and a blind testing set. Serum proteomic profiles were analyzed using SELDI-TOF-MS. Candidate biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays.</p> <p>Results</p> <p>A total of 3 peaks (<it>m/z </it>with 9190, 6631 and 8697 Da) were screened out by support vector machine (SVM) to construct the classification model with high discriminatory power in the training set. The sensitivity and specificity of the model were 95.15% and 93.97% respectively in the blind testing set. The candidate biomarker with <it>m/z </it>of 9190 Da was found to be up-regulated in PTC patients, and was identified as haptoglobin alpha-1 chain. Another two candidate biomarkers (6631, 8697 Da) were found down-regulated in PTC and identified as apolipoprotein C-I and apolipoprotein C-III, respectively. In addition, the level of haptoglobin alpha-1 chain (9190 Da) progressively increased with the clinical stage I, II, III and IV, and the expression of apolipoprotein C-I and apolipoprotein C-III (6631, 8697 Da) gradually decreased in higher stages.</p> <p>Conclusion</p> <p>We have identified a set of biomarkers that could discriminate PTC from non-cancer controls. An efficient strategy, including SELDI-TOF-MS analysis, HPLC purification, MALDI-TOF-MS trace and LC-MS/MS identification, has been proved successful.</p

    From Blood to the Brain: Can Systemically Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier?

    Get PDF
    Systemically infused mesenchymal stem cells (MSCs) are emerging therapeutics for treating stroke, acute injuries, and inflammatory diseases of the central nervous system (CNS), as well as brain tumors due to their regenerative capacity and ability to secrete trophic, immune modulatory, or other engineered therapeutic factors. It is hypothesized that transplanted MSCs home to and engraft at ischemic and injured sites in the brain in order to exert their therapeutic effects. However, whether MSCs possess the ability to migrate across the blood-brain barrier (BBB) that separates the blood from the brain remains unresolved. This review analyzes recent advances in this area in an attempt to elucidate whether systemically infused MSCs are able to actively transmigrate across the CNS endothelium, particularly under conditions of injury or stroke. Understanding the fate of transplanted MSCs and their CNS trafficking mechanisms will facilitate the development of more effective stem-cell-based therapeutics and drug delivery systems to treat neurological diseases and brain tumors

    Recombinant mycobacterium tuberculosis fusion protein for diagnosis of mycobacterium tuberculosis infection: a short-term economic evaluation

    Get PDF
    ObjectivesRecombinant Mycobacterium tuberculosis fusion protein (EC) was anticipated to be used for the scale-up of clinical application for diagnosis of Mycobacterium tuberculosis infection in China, but it lacked a head-to-head economic evaluation based on the Chinese population. This study aimed to estimate the cost-utility and the cost-effectiveness of both EC and tuberculin pure protein derivative (TB-PPD) for diagnosis of Mycobacterium tuberculosis infection in the short term.MethodsFrom a Chinese societal perspective, both cost-utility analysis and cost-effectiveness analysis were performed to evaluate the economics of EC and TB-PPD for a one-year period based on clinical trials and decision tree model, with quality-adjusted life years (QALYs) as the utility-measured primary outcome and diagnostic performance (including the misdiagnosis rate, the omission diagnostic rate, the number of patients correctly classified, and the number of tuberculosis cases avoided) as the effective-measured secondary outcome. One-way and probabilistic sensitivity analyses were performed to validate the robustness of the base-case analysis, and a scenario analysis was conducted to evaluate the difference in the charging method between EC and TB-PPD.ResultsThe base-case analysis showed that, compared with TB-PPD, EC was the dominant strategy with an incremental cost-utility ratio (ICUR) of saving 192,043.60 CNY per QALY gained, and with an incremental cost-effectiveness ratio (ICER) of saving 7,263.53 CNY per misdiagnosis rate reduction. In addition, there was no statistical difference in terms of the omission diagnostic rate, the number of patients correctly classified, and the number of tuberculosis cases avoided, and EC was a similar cost-saving strategy with a lower test cost (98.00 CNY) than that of TB-PPD (136.78 CNY). The sensitivity analysis showed the robustness of cost-utility and cost-effectiveness analysis, and the scenario analysis indicated cost-utility in EC and cost-effectiveness in TB-PPD.ConclusionThis economic evaluation from a societal perspective showed that, compared to TB-PPD, EC was likely to be a cost-utility and cost-effective intervention in the short term in China

    Availability of essential medicines, progress and regional distribution in China: a systematic review and meta-analysis

    Get PDF
    BackgroundEssential medicines are the backbone of healthcare and meet the priority healthcare needs of the population. However, approximately one-third of the global population does not have access to essential medicines. Although China formulated essential medicine policies in 2009, the progress of availability of essential medicines and regional variations remains unknown. Therefore, this study was conducted to evaluate the availability of essential medicines, their progress, and regional distribution in China in the last decade.MethodsWe searched eight databases from their inception to February 2022, relevant websites, and reference lists of included studies. Two reviewers selected studies, extracted data, and evaluated the risk of bias independently. Meta-analyses were performed to quantify the availability of essential medicines, their progress, and regional distribution.ResultsOverall 36 cross-sectional studies conducted from 2009 to 2019 were included, with regional data for 14 provinces. The availability of essential medicines in 2015–2019 [28.1%, 95% confidence interval (CI): 26.4–29.9%] was similar to that in 2009–2014 (29.4%, 95% CI: 27.5–31.3%); lower in the Western region (19.8%, 95% CI: 18.1–21.5%) than Eastern (33.8%, 95% CI: 31.6–36.1%) and Central region (34.5%, 95% CI: 30.6–38.5%); very low for 8 Anatomical Therapeutic Chemical (ATC) categories (57.1%), and low for 5 categories (35.7%) among all ATC groups.ConclusionThe availability of essential medicines in China is low compared with the World Health Organization goal, has not changed much in the last decade, is unequal across regions, and lacks data for half of provinces. For policy-making, the monitoring system of the availability of essential medicines is to be strengthened to enable long-term surveillance, especially in provinces where the data has been missing. Meanwhile, Joint efforts from all stakeholders are warranted to improve the availability of essential medicines in China toward the universal health coverage target.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=315267, identifier: PROSPERO CRD42022315267

    Impact of Human Dermal Microvascular Endothelial Cells on Primary Dermal Fibroblasts in Response to Inflammatory Stress

    Get PDF
    The aim of the present study was to evaluate the impact of the microenvironment produced by dermal microvascular endothelial cells, secondary to a pro-inflammatory challenge, on 2D culture models using dermal fibroblasts and in 3D reconstructed skin model using dermal fibroblasts and keratinocytes from healthy donors. We hypothesized that specific microvascular endothelial low grade inflammation could change fibroblasts phenotype and be involved in extracellular matrix (ECM) modification and skin alteration. Following IFNÎł, TNFα, IL-1ÎČ pro-inflammatory stress on Human Dermal Endothelial Cells (HDMEC) we observed the increased release of Chemokine ligand 2 (CCL2), IL-6 and IL-8 but not VEGF-A in the conditioned medium (CM). The subsequent addition of this endothelial pro-inflammatory CM in dermal fibroblasts revealed an upregulation of IL6, IL8 and CCL2 but no NF-ÎșB gene expression. The resulting ECM formation was impaired with a reduction of the collagen 1 network and a decrease in COL1A1 gene expression in 2D and 3D models. Collagen 1 and pro-LOX protein expression were significantly reduced confirming an impairment of the collagen network related to endothelial inflammation secretion. To conclude, this work showed that, without any immune cells, the endothelial secretion in response to a pro-inflammatory stress is able to activate the fibroblasts that will maintain the pro-inflammatory environment and exacerbate ECM degradation

    A Facile Route to Construct SiCO Nanospheres with Tunable Sizes

    Get PDF
    Natural Science Foundation of China [51175444, 51075344, 61274120]; Fundamental Research Funds for the Central Universities (Xiamen University) [2011121002]; Xiamen Municipal Bureau of Science and Technology [3502Z20126006]; Shenzhen City Science and Technology Innovation Committee [JCYJ20120618155425009]; National Science and Technology Major Project of the Ministry of Science and Technology of China [2011ZX02709-002]We report a facile route to synthesize SiCO nanospheres using Pluronic F127/ polyvinylsilazane (PVSZ) mixed micelles as a template, in which PVSZ selectively swells with the PEO core of the F127 micelles. The thermal degradation of the F127/ PVSZ mixed micelles leads to the formation of SiCO nanospheres. The size of the resultant SiCO nanospheres can be tuned in the range from 25 nm to 75 nm by controlling annealing time at 70 degrees C
    • 

    corecore