7,085 research outputs found

    An Efficient Queueing Policy for Input-Buffered Packet Switches

    Get PDF
    An efficient self-adaptive packet queueing policy, called Queueing with Output Address Grouping (QOAG), is proposed for optimizing the performance of an input buffered packet switch. Each input port of the N×N switch under consideration has Q queues and each queue has B packet buffers, where 1<Q<N. Using QOAG, a packet arriving at an input port is assigned to the queue which has some backlog packets with the same output address as that of the new packet. If the output address of the new packet is different from all current buffered packets in all queues, it is assigned to the shortest queue. The performance of QOAG is compared with the Odd-Even queueing policy of Kolias and Kleinrock (see Proceedings of IEEE ICC '96, p.1674-79, 1996) by simulations. The Zipf distribution version II is used to model the non-uniform packet output distributions. We found that for a 16×16 switch with B=20 buffers at each queue and input load p=0.7, the mean packet delays are 58.1 and 91.2 time slots and the mean throughputs are 0.474 and 0.355 for using QOAG and Odd-Even queueing respectively. This represents a 57% cut in mean packet delay and 25% increase in throughput when QOAG is used.published_or_final_versio

    Use of FBG optical sensors for structural health monitoring: Practical application

    Get PDF
    This paper describes the development of FBG Optical sensors for their practical application on structural health monitoring. The sensors were installed on the Tsing Ma Bridge for a trial run. The results using FBG sensors were in excellent agreement with those acquired by the bridge WASHMS

    Discontinuous Reception for Multiple-Beam Communication

    Get PDF
    This is the final version. Available from IEEE via the DOI in this recordDiscontinuous reception (DRX) techniques have successfully been proposed for energy savings in 4G radio access systems, which are deployed on legacy 2GHz spectrum bands with signal features of omni-directional propagation. In upcoming 5G systems, higher frequency spectrum bands will also be utilized. Unfortunately higher frequency bands encounter more significant path loss, thus requiring directional beamforming to aggregate the radiant signal in a certain direction. We, therefore, propose a DRX scheme for multiple beam (DRXB) communication scenarios. The proposed DRXB scheme is designed to avoid unnecessary energy-and-time-consuming beam-training procedures, which enables longer sleep periods and shorter wake-up latency. We provide an analytical model to investigate the receiver-side energy efficiency and transmission latency of the proposed scheme. Through simulations, our approach is shown to have clear performance improvements over the conventional DRX scheme where beam training is conducted in each DRX cycle.Swedish Research CouncilNational Natural Science Foundation of ChinaEuropean Union Horizon 202

    Request-peer selection for load-balancing in P2P live streaming systems

    Get PDF
    Theme: Services, Applications and BusinessUnlike peer-to-peer (P2P) file sharing, P2P live streaming systems have to meet real-time playback constraints, which makes it very challenging yet crucial to maximize the peer uplink bandwidth utilization so as to deliver content pieces in time. In general, this is achieved by adopting tailor-made piece selection and request-peer selection algorithms. The design philosophy is to regulate the network traffic and to balance the load among peers. In this paper, we propose a new request-peer selection algorithm. In particular, a peer in the network estimates the service response time (SRT) between itself and each neighboring peer. An SRT is measured from when a data piece request is sent until the requested piece arrives. When a peer makes a piece request, the neighbor with smaller SRT and fewer data pieces would be favored among potential providers. This is because smaller SRT implies excess serving capacity and fewer data pieces suggests less piece requests received. We evaluate the performance of our request-peer selection algorithm through extensive packet level simulations. Our simulation results show that the traffic load in the network is better balanced in the sense that the difference of the normalized number of data packets uploaded by each peer is getting smaller and the number of repeated piece requests generated by each peer (due to request failure) is significantly reduced. We also found that the load of streaming server is reduced, and the overall quality of service, measured by playback continuity, startup delay etc, is improved as well. © 2012 IEEE.published_or_final_versio

    Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings

    Get PDF
    The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold

    On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions

    Full text link
    Symbolic ultrametrics define edge-colored complete graphs K_n and yield a simple tree representation of K_n. We discuss, under which conditions this idea can be generalized to find a symbolic ultrametric that, in addition, distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus, yielding a simple tree representation of G. We prove that such a symbolic ultrametric can only be defined for G if and only if G is a so-called cograph. A cograph is uniquely determined by a so-called cotree. As not all graphs are cographs, we ask, furthermore, what is the minimum number of cotrees needed to represent the topology of G. The latter problem is equivalent to find an optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph (V,E_i) of G is a cograph. An upper bound for the integer k is derived and it is shown that determining whether a graph has a cograph 2-decomposition, resp., 2-partition is NP-complete

    Control of seminal fluid protein expression via regulatory hubs in Drosophila melanogaster

    Get PDF
    Highly precise, yet flexible and responsive coordination of expression across groups of genes underpins the integrity of many vital functions. However, our understanding of gene regulatory networks (GRNs) is often hampered by the lack of experimentally tractable systems, by significant computational challenges derived from the large number of genes involved or from difficulties in the accurate identification and characterization of gene interactions. Here we used a tractable experimental system in which to study GRNs: the genes encoding the seminal fluid proteins that are transferred along with sperm (the ‘transferome’) in Drosophila melanogaster fruit flies. The products of transferome genes are core determinants of reproductive success and, to date, only transcription factors have been implicated in the modulation of their expression. Hence, as yet, we know nothing about the post-transcriptional mechanisms underlying the tight, responsive and precise regulation of this important gene set. We investigated this omission in the current study. We first used bioinformatics to identify potential regulatory motifs that linked the transferome genes in a putative interaction network. This predicted the presence of putative microRNA (miRNA) ‘hubs’. We then tested this prediction, that post-transcriptional regulation is important for the control of transferome genes, by knocking down miRNA expression in adult males. This abolished the ability of males to respond adaptively to the threat of sexual competition, indicating a regulatory role for miRNAs in the regulation of transferome function. Further bioinformatics analysis then identified candidate miRNAs as putative regulatory hubs and evidence for variation in the strength of miRNA regulation across the transferome gene set. The results revealed regulatory mechanisms that can underpin robust, precise and flexible regulation of multiple fitness-related genes. They also help to explain how males can adaptively modulate ejaculate composition

    Large-eddy simulatoin of flow field and pollutant dispession in urban street canyons under unstable atmospheric

    Get PDF
    Thermal stratification plays an important role in the air flow and pollutant dispersion processes. This study employed a large-eddy simulation (LES) code based on a one-equation subgrid-scale (SGS) model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. The unstable thermal stratification was simulated by heating the ground level of the street canyons. The thermal buoyancy forces were, using the Boussinesq assumption, taken into account in both the Navier-Stokes equations and the transport equation for SGS turbulent kinetic energy (TKE). The LES had been validated against experimental data obtained in wind tunnel studies before it was applied to study the detailed turbulence and pollutant dispersion characteristics in urban street canyons. The effects of different bulk Richardson number (Rb) were investigated. Several typical temperature differences between the street bottom and ambient air were configured to simulate the scenarios occurring at different times during the day.postprintThe 7th International Conference of Urban Climate (ICUC-7), Yokohama, Japan, 29 June-3 July 2009
    • 

    corecore