
Title An Efficient Queueing Policy for Input-Buffered Packet Switches

Author(s) Liu, NH; Yeung, LK

Citation
The 2000 IEEE International Conference on Communications
(ICC 2000), New Orleans, LA., 18-22 June 2000. In Conference
Prceedings, 2000, v. 3, p. 1753-1757

Issued Date 2000

URL http://hdl.handle.net/10722/46200

Rights

©2000 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

QOAG: An Efficient Queueing Policy for Input-buffered
Packet Switches

N. H. Liu Kwan L. Yeung

Department of Electronic Engineering
City University of Hong Kong, Tat Chee Avenue, Hong Kong

{ kyeung,nhliu}@ee.cityu.edu.hk
Fax: +852 27887791 Tel: +852 27887730

Abstract
An efficient self-adaptive packet queueing policy, called
Queueing with Output Address Grouping (QOAG), is
proposed for optimizing the performance of an input
buffered packet switch. Each input port of the N x N
switch under consideration has Q queues and each queue
has B packet buffers, where 1 < Q < N . Using QOAG, a
packet arrived at an input port is assigned to the queue
which has some backlog packets with the same output
address as that of the new packet. If the output address
of the new packet is different from all current buffered
packets in all queues, it is assigned to the shortest queue.
The performance of QOAG is compared with Odd-Even
queueing policy in [l] by simulations. Zipf distribution
version I1 [2] is used to model the non-uniform packet
output distributions. We found that for a 16 x 16 switch
with B = 20 buffers at each queue and input load p =
0.7, the mean packet delays are 58.1 and 91.2 time slots
and the mean throughputs are 0.474 and 0.355 for using
QOAG and Odd-Even queueing respectively. This repre-
sents a 57% cut in mean packet delay and 25% increase
in throughput when QOAG is used.

I. Introduction

Asynchronous Transfer Mode (ATM) is an interna-
tional networking standard designed for cost-effective
transfer of multimedia traffic, such as videeon-demand
and video conferencing. Switches, as an essential part of
an ATM network, deliver incoming packets arriving on a
particular input port to the output port associated with
the appropriate virtual path. Various ATM switch archi-
tectures [3] have been proposed and studied extensively
in order to provide high performance packet switching
for integrated ATM transport. In this paper we con-
centrate on input-buffered nonblocking packet switches.
The fabric and the memory of an input-buffered switch
needs only to run as fast as the line rate. This makes in-
put queueing very attractive for switches with fast lines

This work was supported by Research Grant Council Earmarked
Grant 9040264.

or with a large number of ports. It has been found
[4] that the maximum throughput of an input-buffered
packet switch with a single queue per input port is lim-
ited to 58.6% under uniformly distributed traffic condi-
tion. This is because of the Head-of-Line (HOL) blocking
phenomenon. That is a packet can be held up by another
packet ahead of it in the same queue and is destined to a
different output. To reduce the HOL blocking, switches
with multiple queues per input port have been studied.

N -
Qae I ... I I I

NxN
Nonbloking
switching

Fabic

outputs

- 1

. .

. .

. .

- + N

Fig. 1. An N x N input-buffered nonblocking switch with B buffers
for each queue and Q input queues for each input port where 1 <
Q < N .

For an input-buffered packet switch, two design prob-
lems are usually addressed: packet queueing policy de-
sign and packet scheduling algorithm design. A packet
queueing policy specifies how packets arrived at an input
port are assigned to different input queues. For switches
with a single queue per input port, the queueing policy
is trivial. We simply place all packets to the same and
only queue in a FIFO manner. For switches with a ded-
icated queue for each output port at each input [5], [6],
the queueing policy is also straight-forward. We simply
assign packets to each queue according to their output
port addresses. For switches with Q queues per input
port where 1 < Q < N (as shown in Fig. l) , the packet
queueing policy design becomes not so straight-forward.

1753
0-7803-6283-7/00/$10.00 0 2000 IEEE

In [l], an Odd-Even queueing policy has been designed.
Unlike packet queueing policy, packet scheduling algo-

rithms have been extensively studied in the literature.
A packet schedvling algorithm determines how packets
at all queues of all input ports are selected for switching
to outputs. The scheduling algorithms for switches with
single queue per input port have been reported in [7],
[8]. For switches with a separate queue for each output,
scheduling algorithms that can achieve 100% throughput
for both uniform and nonuniform traffic are proposed [9].
The problems with this approach are (a) a large number
of input queues (N2) needs to be maintained, and (b)
the complexity of scheduling algorithms is high (0 (N 3)
or comparable complexity [lo]).

In this paper, we focus on packet queueing policy de-
sign. An efficient self-adaptive queueing policy, called
Queueing with Output Address Grouping (QOAG), is
proposed. Using QOAG, a packet arrived at an input
port is assigned to the queue which has some packets
with the same output address as the new packet. If
no packet with the same output address as the new
packet can be found in all queues, the new packet is as-
signed to join the shortest queue. We compare the per-
formance of QOAG with Odd-Even queueing with two
queues per input port. Significant performance improve-
ment in throughput and mean packet delay are obtained
when the packet output addresses are non-uniformly dis-
tributed.

11. Odd-Even Queueing Policy

Consider the Odd-Even switch 111 shown in Fig. 2(a).
It has two FIFO queues for each input port, the odd
queue for storing packets destined to all odd numbered
output ports and and the even queue for storing packets
to all even numbered output ports. We call it Odd-E-
queueing policy.

Based on the HOL packets at all queues, the pac
scheduling algorithm consists of two arbitration roui
in each time slot. During the first round, the HOL pa
ets at all even input queues are scheduled. In case c
tie, the winning packet is chosen randomly. In the E
ond round, the HOL packets at the remaining odd que
(where no packet has been scheduled for transmissior
the first round at the same port) are scheduled simila.
Then the successful packets in both rounds are switcl
to their respective outputs together. For access fairnc
the arbitration order is interchanged in every next ti
slot.

We can easily generalize the above packet queue
policy and packet scheduling algorithm to a switch w
Q queues per input port. In this case, the N out]
ports are partitioned into Q equal portions, one for e;
input queue. When a packet arrives, it is placed i:
the queue where its output port belongs to. The pac
scheduling now consists of Q contention rounds in e;

time slot. Arbitration during the first round involves the
HOL packets at all first queues of all input ports. In case
of a tie, the winning packet is selected randomly. Since
each input port can transmit at most one packet in each
time slot. In the k-th contention round, arbitration only
involves the HOL packets at those k-th queues whose
associated input ports have no packet being scheduled for
transmission in all previous rounds (i.e. from 1 to k - 1).
Repeat this until all Q contention rounds are finished.
Then all packets that have been successfully scheduled
are switched to their respective outputs simultaneously.
To maintain the fairness among all input queues, the
queue serving order is cyclically shifted in each time slot.

In [l], the performance of Odd-Even switch has been
compared with switches with a single queue per input
port. Significant improvement in throughput and mean
packet delay has been obtained. But if the output ad-
dresses of packets are not uniformly distributed over all
outputs, we can easily show that the performance of the
Odd-Even switch decreases dramatically. Fig. 2(a) shows
an example of an 8 x 8 Odd-Even switch, where the out-
put addresses of packets are uniformly distributed only to
all even numbered outputs. In this case, the odd queues
are empty and the Head-of-Line (HOL) blocking remains
as serious as in a switch with a single queue per input
port. If we adopt a new queueing policy at each input
port such that packets destined to outputs 2 and 4 are
assigned to the upper queue, and packets destined to out-
puts 6 and 8 are assigned to the lower queue as shown in
Fig. 2(b). Then the HOL blocking can be reduced and
the switch throughput can be greatly increased.

It is quite obvious that Odd-Even queueing lacks the
flexibility of adapting to traffic changes. We argue that
a good packet queueing policy should always maximize
the number of HOL packets with diferent output ad-
dresses in each time slot. This can facilitate the packet
, , 1. . . I .

E X 8 Odd.
Even

Bwitch

(a>

* 1r*{--

Fig. 2. An 8 x 8 switch two different packet queueing polices.
(a)Odd-Even Switch; (b) upper queue for packets with output ad-
dresses 2 and 4, lower queue for packets with output addresses 6
and 8.

111. Queueing with Output Address Grouping

Consider the N x N input-buffered nonblocking switch
shown in Fig. 1. In each time slot, at most one packet can

1754

arrive at an input port and up to N packets can arrive
at the switch. For each input port, let li be the length
of queue i and c,j be the number of packets at queue a
with output address j. If cij > 0, that means there are
c;j packets in queue i destined to output j. Otherwise,
c i j = 0. Using Queueing with Output Address Grouping
(QOAG), when a packet with output address k arrives,
if C i k > 0, assign the new packet to queue i and set
Cik = Cik + 1; if Cik = 0, assign the new packet to the
queue with min{li}. If the selected queue is full, the new
packet is dropped.

It should be noticed that for packets belong to the
same connection, their relative sequence is kept using
QOAG. When the input traffic load changes, QOAG can
easily adapt itself by distributing the load to queues with
shorter queue lengths.

When a packet has been successfully switched, the cor-
responding values of cij and l i at each input port are
updated accordingly. To be more specific, if the HOL
packet with output address k at queue i of an input port
is switched, we set c i k = cik - 1 and 1, = 1, - 1.

IV. Performance Evaluations

In this section, we compare the performance of QOAG
with the Odd-Even queueing policy in terms of through-
put, mean packet delay and packet loss/overflow prob-
ability. In our simulations, we adopt the same packet
scheduling algorithm as described in Section I1 for both
packet queueing policies. Let the number of packet
buffers at each queue be B = 20, the number of queues at
each input port be Q = 2, and the switch size be N = 16.
Assume packets arriving at each input port follow the
same independent Bernoulli process with probability p
of having a new packet per time slot. This probability
is referred to as the input load. Let the distribution of
packet output addresses follow the Zipf distribution ver-
sion I1 [2], where the probability to output i is

b . - ie - (i - 1y
MO t -

and
bi = 1.

I

The value of 8 is set to 0.4 in our simulations. Note
that Zipf distribution is typically used to model the non-
uniformly distributed traffic patterns. Directly applying
Zipf distribution will generate a list of output proba-
bilities in the decreasing order of the output port num-
ber. Here we randomly shuffle the positions of the output
ports. The resulting packet output access probabilities
are shown in Table 1 and are used in our simulations.

Fig. 3 shows the mean packet delay against the in-
put load p . It is very interesting to note that the mean
packet delay increases with the input load for p < 0.3.

Output address
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Access Probability
0.0476
0.0301
0.0394
0.0254
0.0322
0.0766
0.3299
0.0624
0.0342
0.0430
0.0277
0.0367
0.0265
0.1054
0.0534
0.0290

TABLE I
The distribution of packet output addresses.

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Input M!P)

Fig. 3. Mean packet delay vs input load p for a 16 x 16 switch,
where each input queue size is B = 20 and the number of queues
at each input port is Q = 2.

For 0.3 < p < 0.5, the mean packet delay decreases.
For p > 0.5, the mean packet delay increases again.
This can be explained by the nonuniform distribution
of packet output addresses. From Table 1, output port 7
has the highest access probability and is thus the system
hotspot. According to QOAG, the incoming packets with
the same output address will be assigned to the same
queue. For p < 0.3, the Head-of-Line (HOL) blocking
caused by packets to output 7 is the dominating factor
for the mean packet delay to increase. When p > 0.3, the
queues with packets to output 7 begin to overflow. The
packets that can be successfully switched to output 7
experience a steady/saturated delay performance. When
input load p increases from 0.3 to 0.5, the throughput of
the packets destined to outputs other than 7 increases
significantly and this results in a overall drop in mean

1755

.

.
. . . . 0 . 6 ; 7 ~ ~ , ~ ~ ! , . .

N = 1 6 : W B e i . . : ~ , : / / .

.

. i : : : < $! : ! .
/ / / / : : . : : i

. .
. . . i : : . . . i i : : . . : : :

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

. .
. . . . , , o . o c : ~ ~ ~ " . .

Input Load@)

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Inpa Loa%)

Fig. 4. Throughput vs input load p for a 16 x 16 switch, where
each input queue size is E = 20 and the number of queues at each
input port is Q = 2.

packet delay. For p > 0.5, the queues with packets des-
tined to other output addresses begin to build up as well,
the HOL blocking increases and causes the overall mean
packet delay to increase again. For p = 0.7, the mean
packet delay is 58.1 time slots using Queueing with Out-
put Address Grouping (QOAG) and 91.2 time slots using
Odd-Even queueing policy. A 57% cut in mean packet
delay is achieved.

Figs. 4 and 5 show the throughput and packet loss
probability versus input load p. For both throughput
and packet loss probability, QOAG achieves better per-
formance than the Odd-Even queueing policy. At p =
0.7, the throughput is 0.474 for QOAG and 0.355 for
Odd-Even queueing, a 33.5% increase in throughput. At
the same load, the packet loss probabilities are 0.323 for
QOAG and 0.493 for Odd-Even queueing. ' This gives a
52% cut in packet loss.

As we discussed before, an efficient queueing policy
should be able to adapt to traffic variations. We change
the distribution of the output addresses at time slot 5000
and we trace the resulting changes in packet losf prob-
ability for both QOAG in Fig. 6. The distribution of
output addresses after the change is shown in Table 2.
The input load p is fixed at 0.8. Each point shown in
Fig. 6 is the average packet loss probability for every 5
consecutive time slots. After the output address change
at time slot 5000, we can see that QOAG quickly adapts
to the change by converging to the previous packet loss
probability level.

We also evaluate the performance of QOAG and Odd-
Even queueing policy when the buffer size B for each
input port is infinite. Fig. 7 shows the mean packet de-
lay against the input load p. At p = 0.19, the mean
packet delay is 22.5 time slots for QOAG and 37.21 time
slots for Odd-Even queueing policy. A 65% cut in mean

Fig. 5. Packet loss probability vs input load p for a 16 x 16 switch.
Each inDut aueue size is E = 20 and the number of queues at each - -
input port is Q = 2.

Output address
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Access Probability
0.1054
0.0277
0.0624
0.0290
0.0536
0.3299
0.0430
0.0342
0.0255
0.0305
0.0766
0.0475
0.0322
0.0265
0.0342
0.1054

TABLE I1
T h e distribution of output addresses used after time slot SOOO.

packet delay is achieved using QOAG. Fig. 9 shows the
throughput against the input load p. Again, QOAG out-
performs the Odd-Even queueing policy. At input load
p = 0.6, the throughput is 0.453 for QOAG and 0.355 for
Odd-Even queueing policy. A 27% increase in through-
put is obtained.

V. Conclusions

In this paper, an efficient self-adaptive queueing
policy, called Queueing with Output Address Group
ing (QOAG), was proposed for input-buffered packet
switches. Using QOAG, an incoming packet with the
same output address as some packets in the backlog will
be assigned to the same input queue as those backlog
packets. Otherwise, it is assigned to the shortest queue.

1756

0.8

0.7

0.6

b
0.5

8 e

8

8

0.4

f 0.:

0.;

0.1

O.(
1

NrlS Q=Z p=OS QOAG

Fig. 6. Packet loss probability from time slots 4900 to 5500 us-
ing QOAG for a 16 x 16 switch with p = 0.8, B = 20 and Q =
2. The packet loss probability is taken by averaging over every 5
consecutive time slots.

The performance of QOAG was compared with Odd-
Even queueing policy under nonuniformly distributed
packet output addresses. We found that QOAG out-
performs the Odd-Even queueing with respect to mean
packet delay, throughput and packet loss probability. We
also showed that QOAG is adaptive to traffic variations.
As a future work, efforts should focus on the the perfor-
mance of using QOAG for providing quality of service
guarantees for different classes of traffic.

REFERENCES

[l] C. Kolias and L. Kleinrock, “The odd-even queueing ATM
switch: performance evaluation,” Proceedings of IEEE ICC

[2] D. E. Knuth, “The art of computer programming, volume 3,”
Second Edition, Addison-Wesley 1981.

(31 U. Black, A TM: Foundotion For Broadband Networks. Pren-
tice Hall, 1993.

[4] M. Karol, M. Hluchyj, and S . Morgan, “Input versus output
queuing on a space division switch,” IEEE 5”s. on Com-
mun., Vol. 35, pp.1347-1356, Dec. 1987.

[5] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High spzed
switch scheduling for local area networks,” ACM I t ans , on
Computer Systems, pp. 319-352 Nov 1993.

[6] M. Karol, K. Eng, and H. Obara, “Improving the perfor-
mance of input-queued ATM packet switches,” Proceedings
of IEEE INFOCOM ’92, pp. 110-115 1992.

[7] T. Inukai, “An efficient SS/TDMA time slot assignment al-
gorithm,” IEEE 2”s. on Commun., Vol. COM-27, No. 10,
pp. 1449-1455, Oct. 1979.

(81 M. Karol and M. Hluchyj, “Queueing in high-performance
packet-switching,” IEEE J. Selected Areas Commun., vol. 6,
pp. 1587-1597 Dec. 1988.

[9] N. McKeown and A. Mekkittikul, “A practical schedul-
ing algorithm to achieve 100% throughput in input-queued
switches,” Proceedings of IEEE INFOCOM ’98, 1998.

[lo] R. K. Ahuja, T. L. Magannti, and J. B. Orlin, “Network
Flows: Theory, Algorithms, and Application,” Englewood
Clifs, NJ: Prentice-Hall 1993.

’96, pp. 1674-1679 1996.

0 0.05 0.1 0.15 0.2 025

Input Load@)

Fig. 7. Mean packet delay vs input load p for a 16 x 16 switch with
infinite buffer at each input queue, and the number of queues at
each input port is 2.

V.”

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input hdb)

Fig. 8. Throughput vs input load p for a 16x 16 switch with infinite
buffer at each input queue, and the number of queues at each input
port is 2.

1757

