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Abstract 
An efficient self-adaptive packet queueing policy, called 
Queueing with Output Address Grouping (QOAG), is 
proposed for optimizing the performance of an input 
buffered packet switch. Each input port of the N x N 
switch under consideration has Q queues and each queue 
has B packet buffers, where 1 < Q < N .  Using QOAG, a 
packet arrived at an input port is assigned to the queue 
which has some backlog packets with the same output 
address as that of the new packet. If the output address 
of the new packet is different from all current buffered 
packets in all queues, it is assigned to the shortest queue. 
The performance of QOAG is compared with Odd-Even 
queueing policy in [l] by simulations. Zipf distribution 
version I1 [2] is used to model the non-uniform packet 
output distributions. We found that for a 16 x 16 switch 
with B = 20 buffers at each queue and input load p = 
0.7, the mean packet delays are 58.1 and 91.2 time slots 
and the mean throughputs are 0.474 and 0.355 for using 
QOAG and Odd-Even queueing respectively. This repre- 
sents a 57% cut in mean packet delay and 25% increase 
in throughput when QOAG is used. 

I. Introduction 

Asynchronous Transfer Mode (ATM) is an interna- 
tional networking standard designed for cost-effective 
transfer of multimedia traffic, such as videeon-demand 
and video conferencing. Switches, as an essential part of 
an ATM network, deliver incoming packets arriving on a 
particular input port to the output port associated with 
the appropriate virtual path. Various ATM switch archi- 
tectures [3] have been proposed and studied extensively 
in order to provide high performance packet switching 
for integrated ATM transport. In this paper we con- 
centrate on input-buffered nonblocking packet switches. 
The fabric and the memory of an input-buffered switch 
needs only to run as fast as the line rate. This makes in- 
put queueing very attractive for switches with fast lines 
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or with a large number of ports. It has been found 
[4] that the maximum throughput of an input-buffered 
packet switch with a single queue per input port is lim- 
ited to 58.6% under uniformly distributed traffic condi- 
tion. This is because of the Head-of-Line (HOL) blocking 
phenomenon. That is a packet can be held up by another 
packet ahead of it in the same queue and is destined to a 
different output. To reduce the HOL blocking, switches 
with multiple queues per input port have been studied. 
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Fig. 1. An N x N input-buffered nonblocking switch with B buffers 
for each queue and Q input queues for each input port where 1 < 
Q < N .  

For an input-buffered packet switch, two design prob- 
lems are usually addressed: packet queueing policy de- 
sign and packet scheduling algorithm design. A packet 
queueing policy specifies how packets arrived at an input 
port are assigned to different input queues. For switches 
with a single queue per input port, the queueing policy 
is trivial. We simply place all packets to the same and 
only queue in a FIFO manner. For switches with a ded- 
icated queue for each output port at each input [5], [6], 
the queueing policy is also straight-forward. We simply 
assign packets to each queue according to their output 
port addresses. For switches with Q queues per input 
port where 1 < Q < N (as shown in Fig. l ) ,  the packet 
queueing policy design becomes not so straight-forward. 
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In [l], an Odd-Even queueing policy has been designed. 
Unlike packet queueing policy, packet scheduling algo- 

rithms have been extensively studied in the literature. 
A packet schedvling algorithm determines how packets 
at all queues of all input ports are selected for switching 
to outputs. The scheduling algorithms for switches with 
single queue per input port have been reported in [7], 
[8]. For switches with a separate queue for each output, 
scheduling algorithms that can achieve 100% throughput 
for both uniform and nonuniform traffic are proposed [9]. 
The problems with this approach are (a) a large number 
of input queues (N2) needs to be maintained, and (b) 
the complexity of scheduling algorithms is high ( 0 ( N 3 )  
or comparable complexity [lo]). 

In this paper, we focus on packet queueing policy de- 
sign. An efficient self-adaptive queueing policy, called 
Queueing with Output Address Grouping (QOAG), is 
proposed. Using QOAG, a packet arrived at an input 
port is assigned to the queue which has some packets 
with the same output address as the new packet. If 
no packet with the same output address as the new 
packet can be found in all queues, the new packet is as- 
signed to join the shortest queue. We compare the per- 
formance of QOAG with Odd-Even queueing with two 
queues per input port. Significant performance improve- 
ment in throughput and mean packet delay are obtained 
when the packet output addresses are non-uniformly dis- 
tributed. 

11. Odd-Even Queueing Policy 

Consider the Odd-Even switch 111 shown in Fig. 2(a). 
It has two FIFO queues for each input port, the odd 
queue for storing packets destined to all odd numbered 
output ports and and the even queue for storing packets 
to all even numbered output ports. We call it Odd-E- 
queueing policy. 

Based on the HOL packets at all queues, the pac 
scheduling algorithm consists of two arbitration roui 
in each time slot. During the first round, the HOL pa 
ets at all even input queues are scheduled. In case c 
tie, the winning packet is chosen randomly. In the E 
ond round, the HOL packets at the remaining odd que 
(where no packet has been scheduled for transmissior 
the first round at the same port) are scheduled simila. 
Then the successful packets in both rounds are switcl 
to their respective outputs together. For access fairnc 
the arbitration order is interchanged in every next ti 
slot. 

We can easily generalize the above packet queue 
policy and packet scheduling algorithm to a switch w 
Q queues per input port. In this case, the N out] 
ports are partitioned into Q equal portions, one for e; 
input queue. When a packet arrives, it is placed i: 
the queue where its output port belongs to. The pac 
scheduling now consists of Q contention rounds in e; 

time slot. Arbitration during the first round involves the 
HOL packets at all first queues of all input ports. In case 
of a tie, the winning packet is selected randomly. Since 
each input port can transmit at most one packet in each 
time slot. In the k-th contention round, arbitration only 
involves the HOL packets at those k-th queues whose 
associated input ports have no packet being scheduled for 
transmission in all previous rounds (i.e. from 1 to k - 1). 
Repeat this until all Q contention rounds are finished. 
Then all packets that have been successfully scheduled 
are switched to their respective outputs simultaneously. 
To maintain the fairness among all input queues, the 
queue serving order is cyclically shifted in each time slot. 

In [l], the performance of Odd-Even switch has been 
compared with switches with a single queue per input 
port. Significant improvement in throughput and mean 
packet delay has been obtained. But if the output ad- 
dresses of packets are not uniformly distributed over all 
outputs, we can easily show that the performance of the 
Odd-Even switch decreases dramatically. Fig. 2(a) shows 
an example of an 8 x 8 Odd-Even switch, where the out- 
put addresses of packets are uniformly distributed only to 
all even numbered outputs. In this case, the odd queues 
are empty and the Head-of-Line (HOL) blocking remains 
as serious as in a switch with a single queue per input 
port. If we adopt a new queueing policy at each input 
port such that packets destined to outputs 2 and 4 are 
assigned to the upper queue, and packets destined to out- 
puts 6 and 8 are assigned to the lower queue as shown in 
Fig. 2(b). Then the HOL blocking can be reduced and 
the switch throughput can be greatly increased. 

It is quite obvious that Odd-Even queueing lacks the 
flexibility of adapting to traffic changes. We argue that 
a good packet queueing policy should always maximize 
the number of HOL packets with diferent output ad- 
dresses in each time slot. This can facilitate the packet 
, , 1. . . I .  
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Fig. 2. An 8 x 8 switch two different packet queueing polices. 
(a)Odd-Even Switch; (b) upper queue for packets with output ad- 
dresses 2 and 4, lower queue for packets with output addresses 6 
and 8. 

111. Queueing with Output Address Grouping 

Consider the N x N input-buffered nonblocking switch 
shown in Fig. 1. In each time slot, at most one packet can 
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arrive at  an input port and up to N packets can arrive 
at the switch. For each input port, let li be the length 
of queue i and c,j be the number of packets at  queue a 
with output address j. If cij > 0, that means there are 
c;j packets in queue i destined to output j. Otherwise, 
c i j  = 0. Using Queueing with Output Address Grouping 
(QOAG), when a packet with output address k arrives, 
if C i k  > 0, assign the new packet to queue i and set 
Cik = Cik + 1; if Cik = 0, assign the new packet to the 
queue with min{li}. If the selected queue is full, the new 
packet is dropped. 

It should be noticed that for packets belong to the 
same connection, their relative sequence is kept using 
QOAG. When the input traffic load changes, QOAG can 
easily adapt itself by distributing the load to queues with 
shorter queue lengths. 

When a packet has been successfully switched, the cor- 
responding values of cij and l i  at each input port are 
updated accordingly. To be more specific, if the HOL 
packet with output address k at queue i of an input port 
is switched, we set c i k  = cik - 1 and 1, = 1, - 1. 

IV. Performance Evaluations 

In this section, we compare the performance of QOAG 
with the Odd-Even queueing policy in terms of through- 
put, mean packet delay and packet loss/overflow prob- 
ability. In our simulations, we adopt the same packet 
scheduling algorithm as described in Section I1 for both 
packet queueing policies. Let the number of packet 
buffers at each queue be B = 20, the number of queues at  
each input port be Q = 2, and the switch size be N = 16. 
Assume packets arriving at each input port follow the 
same independent Bernoulli process with probability p 
of having a new packet per time slot. This probability 
is referred to as the input load. Let the distribution of 
packet output addresses follow the Zipf distribution ver- 
sion I1 [2], where the probability to output i is 

b .  - ie - (i - 1y 
MO t -  

and 
bi = 1. 

I 

The value of 8 is set to 0.4 in our simulations. Note 
that Zipf distribution is typically used to model the non- 
uniformly distributed traffic patterns. Directly applying 
Zipf distribution will generate a list of output proba- 
bilities in the decreasing order of the output port num- 
ber. Here we randomly shuffle the positions of the output 
ports. The resulting packet output access probabilities 
are shown in Table 1 and are used in our simulations. 

Fig. 3 shows the mean packet delay against the in- 
put load p .  It is very interesting to note that the mean 
packet delay increases with the input load for p < 0.3. 

Output address 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Access Probability 
0.0476 
0.0301 
0.0394 
0.0254 
0.0322 
0.0766 
0.3299 
0.0624 
0.0342 
0.0430 
0.0277 
0.0367 
0.0265 
0.1054 
0.0534 
0.0290 

TABLE I 
The distribution of packet output addresses. 

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Input M!P) 

Fig. 3. Mean packet delay vs input load p for a 16 x 16 switch, 
where each input queue size is B = 20 and the number of queues 
at each input port is Q = 2. 

For 0.3 < p < 0.5, the mean packet delay decreases. 
For p > 0.5, the mean packet delay increases again. 
This can be explained by the nonuniform distribution 
of packet output addresses. From Table 1, output port 7 
has the highest access probability and is thus the system 
hotspot. According to QOAG, the incoming packets with 
the same output address will be assigned to the same 
queue. For p < 0.3, the Head-of-Line (HOL) blocking 
caused by packets to output 7 is the dominating factor 
for the mean packet delay to increase. When p > 0.3, the 
queues with packets to output 7 begin to overflow. The 
packets that can be successfully switched to output 7 
experience a steady/saturated delay performance. When 
input load p increases from 0.3 to 0.5, the throughput of 
the packets destined to outputs other than 7 increases 
significantly and this results in a overall drop in mean 
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Fig. 4. Throughput vs input load p for a 16 x 16 switch, where 
each input queue size is E = 20 and the number of queues at each 
input port is Q = 2. 

packet delay. For p > 0.5, the queues with packets des- 
tined to other output addresses begin to build up as well, 
the HOL blocking increases and causes the overall mean 
packet delay to increase again. For p = 0.7, the mean 
packet delay is 58.1 time slots using Queueing with Out- 
put Address Grouping (QOAG) and 91.2 time slots using 
Odd-Even queueing policy. A 57% cut in mean packet 
delay is achieved. 

Figs. 4 and 5 show the throughput and packet loss 
probability versus input load p. For both throughput 
and packet loss probability, QOAG achieves better per- 
formance than the Odd-Even queueing policy. At p = 
0.7, the throughput is 0.474 for QOAG and 0.355 for 
Odd-Even queueing, a 33.5% increase in throughput. At  
the same load, the packet loss probabilities are 0.323 for 
QOAG and 0.493 for Odd-Even queueing. ' This gives a 
52% cut in packet loss. 

As we discussed before, an efficient queueing policy 
should be able to adapt to traffic variations. We change 
the distribution of the output addresses at time slot 5000 
and we trace the resulting changes in packet losf prob- 
ability for both QOAG in Fig. 6. The distribution of 
output addresses after the change is shown in Table 2. 
The input load p is fixed at 0.8. Each point shown in 
Fig. 6 is the average packet loss probability for every 5 
consecutive time slots. After the output address change 
at time slot 5000, we can see that QOAG quickly adapts 
to the change by converging to the previous packet loss 
probability level. 

We also evaluate the performance of QOAG and Odd- 
Even queueing policy when the buffer size B for each 
input port is infinite. Fig. 7 shows the mean packet de- 
lay against the input load p. At p = 0.19, the mean 
packet delay is 22.5 time slots for QOAG and 37.21 time 
slots for Odd-Even queueing policy. A 65% cut in mean 

Fig. 5. Packet loss probability vs input load p for a 16 x 16 switch. 
Each inDut aueue size is E = 20 and the number of queues at each - -  
input port is Q = 2. 

Output address 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Access Probability 
0.1054 
0.0277 
0.0624 
0.0290 
0.0536 
0.3299 
0.0430 
0.0342 
0.0255 
0.0305 
0.0766 
0.0475 
0.0322 
0.0265 
0.0342 
0.1054 

TABLE I1 
T h e  distribution of output addresses used after time slot SOOO. 

packet delay is achieved using QOAG. Fig. 9 shows the 
throughput against the input load p. Again, QOAG out- 
performs the Odd-Even queueing policy. At input load 
p = 0.6, the throughput is 0.453 for QOAG and 0.355 for 
Odd-Even queueing policy. A 27% increase in through- 
put is obtained. 

V. Conclusions 

In this paper, an efficient self-adaptive queueing 
policy, called Queueing with Output Address Group 
ing (QOAG), was proposed for input-buffered packet 
switches. Using QOAG, an incoming packet with the 
same output address as some packets in the backlog will 
be assigned to the same input queue as those backlog 
packets. Otherwise, it is assigned to the shortest queue. 

1756 



0.8 

0.7 

0.6 

b 
0.5 

8 e 

8 

8 

0.4 

f 0.: 

0.; 

0.1 

O.( 
1 

NrlS Q=Z p=OS QOAG 

Fig. 6. Packet loss probability from time slots 4900 to 5500 us- 
ing QOAG for a 16 x 16 switch with p = 0.8, B = 20 and Q = 
2. The packet loss probability is taken by averaging over every 5 
consecutive time slots. 

The performance of QOAG was compared with Odd- 
Even queueing policy under nonuniformly distributed 
packet output addresses. We found that QOAG out- 
performs the Odd-Even queueing with respect to mean 
packet delay, throughput and packet loss probability. We 
also showed that QOAG is adaptive to traffic variations. 
As a future work, efforts should focus on the the perfor- 
mance of using QOAG for providing quality of service 
guarantees for different classes of traffic. 
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Fig. 7. Mean packet delay vs input load p for a 16 x 16 switch with 
infinite buffer at each input queue, and the number of queues at 
each input port is 2. 
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Fig. 8. Throughput vs input load p for a 16x 16 switch with infinite 
buffer at each input queue, and the number of queues at each input 
port is 2. 
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