
Title Request-peer selection for load-balancing in P2P live streaming
systems

Author(s) Liu, N; Wen, Z; Yeung, LK; Lei, ZB

Citation

The IEEE Conference on Wireless Communications and
Networking (WCNC 2012), Paris, France, 1-4 April 2012. In IEEE
Wireless Communications and Networking Conference
Proceedings, 2012, p. 3227-3232

Issued Date 2012

URL http://hdl.handle.net/10722/165312

Rights IEEE Wireless Communications and Networking Conference.
Proceedings. Copyright © IEEE Communications Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37987053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Request-Peer Selection for Load-Balancing in P2P Live

Streaming Systems

Nianwang Liu, Zheng Wen, Kwan L. Yeung

Department of Electrical and Electronic Engineering

The University of Hong Kong

Pokfulam, Hong Kong

{nwliu, wenzheng, kyeung}@eee.hku.hk

 Zhibin Lei

Applied Science & Technology Research Institute (ASTRI)

Shatin, Hong Kong

lei@astri.org

Abstract—Unlike peer-to-peer (P2P) file sharing, P2P live

streaming systems have to meet real-time playback constraints,

which makes it very challenging yet crucial to maximize the

peer uplink bandwidth utilization so as to deliver content

pieces in time. In general, this is achieved by adopting tailor-

made piece selection and request-peer selection algorithms. The

design philosophy is to regulate the network traffic and to

balance the load among peers. In this paper, we propose a new

request-peer selection algorithm. In particular, a peer in the

network estimates the service response time (SRT) between

itself and each neighboring peer. An SRT is measured from

when a data piece request is sent until the requested piece

arrives. When a peer makes a piece request, the neighbor with

smaller SRT and fewer data pieces would be favored among

potential providers. This is because smaller SRT implies excess

serving capacity and fewer data pieces suggests less piece

requests received. We evaluate the performance of our

request-peer selection algorithm through extensive packet level

simulations. Our simulation results show that the traffic load

in the network is better balanced in the sense that the

difference of the normalized number of data packets uploaded

by each peer is getting smaller and the number of repeated

piece requests generated by each peer (due to request failure)

is significantly reduced. We also found that the load of

streaming server is reduced, and the overall quality of service,

measured by playback continuity, startup delay etc, is

improved as well.

I. INTRODUCTION

P2P live streaming, representing the state of the art

technique to stream live media, has been attracting

increasing attentions from both academia and industry (e.g.

[1][2][3]). By utilizing the P2P infrastructure, the live

streaming system can easily scale up to millions of users as

the server load is largely distributed among peers in the

network.

As compared to P2P file sharing system, the real-time

playback constraint of live media poses challenges in

designing efficient live streaming systems. Specifically, the

video streaming largely relies on the collaborative piece

exchange among peers in the network. It is essential for the

peers to spread out the rare pieces as quickly as possible.

The content variety incurred at peer neighborhood could

help to maximize the uplink bandwidth utilization. On the

other hand, the urgency of each piece should also be

considered in order to meet playback constraint. To address

this issue, researchers have mainly focused on designing

efficient piece selection algorithms. For a given set of

missing pieces, a piece selection algorithm decides which

piece should a peer requests first [4]. The key insight is that

piece request should take not only the content rarity but also

the timeliness requirement into consideration [4][5].

 In contrast to piece selection algorithm, fewer efforts

have been spent on a subsequent yet equally important

problem of request-peer selection [6]. For a selected data

piece and a set of potential piece providers, the task of

request-peer selection is to determine which

neighbor/provider should be approached for the selected

piece. Properly allocating the piece request to different

neighbors would help to balance the load at each peer. This

would help to ensure the neighbors of a peer always have

enough bandwidth to serve incoming piece requests in time.

This could also help to decrease the origin streaming server

load.

In this paper, we focus on designing request-peer

selection algorithms. The simplest approach is to pick up a

potential provider randomly. It is interesting to note that

contrary to the conventional wisdom, such a randomized

algorithm does not balance the load among peers. According

to the classic ball-and-bin model [7], randomized algorithm

tends to overload some of the nodes with extremely high

probability. In CoolStreaming [3], the peer with the highest

uploading bandwidth is selected as piece provider. However,

it is very difficult to predict each neighbor’s uploading

bandwidth dedicated to serve a particular peer. In the

context of P2P video-on-demand (VoD) streaming, closest

playback-point first (CPF) is proposed in [6], where peer

sends the piece request to the neighbor with the closest

playback-point with respect to itself. Since such peer pairs

may have larger buffer window overlap, they can thus better

utilize each other’s uplink capacity for mutual piece sharing.

But CPF is not suitable for P2P live streaming because live

streaming playback is relatively synchronized and the

playback-point difference among peers will be too small.

Recently, an analytical model is constructed to study the

load balancing performance in P2P streaming in [9]. To

facilitate the analysis, it assumes that all neighbors have the

piece a requesting peer wants so that the requesting peer can

adaptively adjust the number of piece requests sent to each

neighbor to balance among neighbors. To limit the total

number of neighbors allowed, it finds a group of neighbors

2012 IEEE Wireless Communications and Networking Conference: Services, Applications, and Business

978-1-4673-0437-5/12/$31.00 ©2012 IEEE 3227

based on the measured service response time. Our work

differs from [9] mainly in that: 1) we consider a more

practical request-peer selection scenario where only a small

subset of the neighbors has the piece selected by a peer; 2)

we evaluate our algorithm through extensive packet level

simulations and show the strength of our algorithm in terms

of both server load deduction and quality of service. Note

that the analytical model in [9] is verified by high level

simulation with stronger assumptions.

The rest of the paper is organized as follows. In Section

II, we present the proposed request-peer selection algorithm.

In Section III, we introduce our packet level simulation

setup as well as the performance comparison between our

proposed algorithm and the randomized algorithm. Lastly,

we conclude the paper in Section IV.

II. LOAD BALANCED REQUEST-PEER

SELECTION

A peer in live streaming system maintains a data piece

pre-fetch window which shifts/slides gradually as the

playback point moves [3]. Without loss of generality, we

assume a peer is only interested in getting the pieces in the

pre-fetch window for smooth playback. (Note that the pre-

fetch window of a VoD system is much bigger, and that of a

file sharing system is the biggest, and covers every piece of

the file.) As compared to P2P VoD streaming systems, peers

in the live streaming system tend to have similar playback-

point. Their pre-fetch windows tend to be significantly

overlapped and this facilitates mutual piece exchange

among peers. This also implies that more neighboring peers

have the missing piece the requesting peer wants. Given a

set of potential piece providers in the neighborhood, how to

decide which neighbor should be contacted for retrieving

the data piece already selected by the piece selection

algorithm? From the requesting peer’s point of view, a

proper selection of piece provider can help to retrieve the

missing piece in time for playback; otherwise the peer

would either suffer from video quality degradation or

experience a playback suspension. From the system’s

perspective, a proper piece provider selection can balance

the traffic load in the network so that peers can better utilize

their uplink capacity to deliver the most urgent pieces.

Moreover, due to the more efficient peer upload bandwidth

utilization, the uplink bandwidth consumption at the server

can be reduced.

Due to simplicity and runtime efficiency, the

randomized algorithm for request-peer selection is quite

popular. But the analysis of the classic ball-and-bin model

in [7] suggests that such a randomized scheme would

overload some peers with extremely high probability when

the network scales up. To take a closer look at the situation

in the context of P2P live streaming system, we use the

following example to illustrate this problem.

Let us consider the homogeneous case first, where peers:

 , and are the neighbors of (please

refer to Fig. 1.) and they all have data piece j. If the random

algorithm is used by to select a supplier for piece j,

the three neighbors would get equal opportunity to be

selected:

 = = =

 ,

Note: n is the number of neighbors having piece j; here n=3.

It is obvious that smaller n would lead to greater . That

means a rare piece (and thus its owner) has a higher

probability being requested/selected.

Let denote the load (i.e. the amount of requests

received) on the uplink of peer ; and

let ’s pre-

fetch window. We have

 = + + +…+

 = + + +…+

 = + + +…+

Since > > , has the largest number of

probability terms (i.e. the number of) while gets

the smallest . As all the probability terms are positive,

adding more terms would likely lead to bigger value, which

in turn indicates heavier loading of the corresponding peer.

Besides, the more pieces a peer buffers, the higher chance it

would buffer some rare pieces and would thus have greater

chance to be selected as piece provider.

 Considering both the buffer occupancy of the pre-fetch

window and the rarity of data pieces, it is very likely that:

 > > . In other words, it is very likely that

would be selected to serve more requests than and

 , and thus becomes a hotspot. This uneven traffic load

is not desirable. The uplink capacity of should be

better utilized to deliver the two pieces in its pre-fetch

window, while can focus on delivering pieces

does not have. In doing so, the overall uplink bandwidth can

be better utilized. From this example, we can see that the

content availability at each peer plays an important role in

request-peer selection.

In practice, peers in the P2P live streaming system have

different upload/download bandwidths. In some cases the

differences can be quite significant (e.g. ADSL v.s. Ethernet

Buffer Window
Pre-fetch Window

Piece j

Peer1

Peer2

Peer3

Peerk

N1

N2

N3

>
>

Playback Point

Figure 1. P2P Live Streaming

3228

based access technology). The randomized algorithm above

neglects the differences in each peer’s upload capability,

which undermines load balancing. Let us reuse the previous

example to illustrate this problem. Assume the upload

bandwidth of each peer is , and , respectively.

And . With the randomized algorithm,

 gets the most requests to serve while its upload

bandwidth is the least among the three potential providers,

whereas with the largest upload capacity but receives

the least requests. In this case, is overloaded

while ’s upload bandwidth is underutilized. This

example shows that the number of piece requests

entertained by each peer should be proportional to its uplink

capacity.

Based on the insights we obtained from the two

examples above, a new request-peer selection algorithm is

designed by taking both potential provider’s content

availability and upload capacity into consideration. The idea

is that: potential providers with larger upload capacity and

fewer data pieces should be given higher priority to be

selected. Without loss of generality, let be the probability

of potential provider peer i to be selected as the piece

supplier, and is given by:

∑

 ̅

∑
 (1)

In (1), is the upload bandwidth of peer i dedicated to

serve the requesting peer; is the number of pieces in peer

i’s buffer; ̅ is the mean value of all ; λ is a weighting

factor that determines the relative importance of the two

factors: data rarity and upload bandwidth.

 Since the upload bandwidth at a peer is shared among

all potential network applications running on the end host, it

is very difficult (if not impossible) to determine , the

upload bandwidth dedicated to serving each neighboring

peer. Besides, is time varying with the network load. We

take an alternative approach. We adopt the service response

time (SRT) instead of . SRT is defined as the time

duration from a data piece request is sent to the moment the

requested piece is received. It is a good indication of

whether a neighbor is overloaded or not. Therefore, the

probability of peer is selected by our request-peer

selection algorithm becomes:

∑

 λ
 ̅

∑
 (2)

 is the expected service response time of peer i. To

smooth out the fluctuation, we take the moving average of

each response time sample. More specifically, each is

calculated according to the following formula:

 (3)

where α is a constant between 0 and 1, by adjusting the

value of α we can adjust the weighting of the old sampled τ

and the latest . According to our simulation results,

we found that 0.7 is a good value for α as more emphasis is

paid on the historical value and big spike introduced by the

fresh sample is avoided.

Note that peers in the system need to keep records of all

its neighbors’ service response time τ each time when a

piece is successfully downloaded, the neighbor’s SRT is

updated according to (3). In addition, the content

availability information of each neighbor is derived from the

periodic buffer map exchange among peers. While making

the request-peer selection, the requesting peer selects a piece

provider according to the probability in (2).

Note that a specific peer may have different service

response times to different peers due to the heterogeneity in

the network. The response time based request-peer selection

helps to stabilize the system. Specifically, a peer with

smaller SRT would be favored by its neighbors thus serves

more requests. Along with the gradual increase of the

request queue size, the peer’s response time will increase (as

detected by its neighbors). Such an increase will lead to the

decrease of piece requests generated from its neighbors thus

protect the peer from being overloaded.

III. PERFORMANCE EVALUATION

A. Performance Metrics

For each peer in the system, we use three metrics to

capture its quality of experience: the start-up delay, the total

caching time; and the restart count [6]. Start-up delay is the

time duration from the instance when a peer joins the

system (i.e. approaching the tracker for a list of active peers)

to the moment the peer has retrieved sufficient pieces and

starts playback. The total caching time captures the total

amount of time during which a peer suspends its playback

waiting for the missing pieces to arrive. In our simulations,

we adopt the simple playback control scheme as discussed

in [10]. Briefly, a peer would suspend its playback

whenever the next piece to play is not available for certain

time duration (set to 3 seconds in our simulation), after

which the peer will resume its playback from the next

available piece in the local buffer window. (Note that the 3

seconds waiting also contributes to the total caching time

measure.) For the worst case that there is no subsequent

piece available in the local buffer for playback, the peer

quits and rejoins the system by contacting the tracker again.

We use the restart count to capture the total number of such

events.

In order to investigate whether the traffic load is well

balanced among peers, we closely monitor two metrics at

each peer: the number of data packets sent, and the number

of repeated piece requests sent. The former captures the

total number of data packets sent by a peer during the

session. And the latter is used to trace the piece request

timeout events. Note that a piece request timer (3 sec.) is

3229

Table I. SIMULATION PARAMETERS

Simulation Time 500 sec.

Peer Join Speed 10 peers/sec.

Number of Peers 300

Number of Packets per Piece 94

Avg. Piece Size 58KB(456Kbps)

Peer bandwidth Set I (Down/Up) 10/2 Mbps

Peer bandwidth Set II (Down/Up) 10/0.5 Mbps

Server Bandwidth (Down/Up) 20/20 Mbps

Max. Piece requests to one peer 3

λ 0.9

α 0.7

I

8

Playback Point

Saturability=100%

Random

Saturability=80%

Random

Saturability=50%

Random

II III

16 24

Figure 2. Piece selection strategy used in simulation

Figure 3. Normalized number of packets sent

Figure 4. Number of repeated requests

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Number of Data Packages Sent

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Random

Proposed

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Repeated Requests

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Random

Proposed

triggered whenever a piece request is sent. On the expiry of

the timer and the piece is not completely received, the

requesting peer generates another (repeated) request for the

same piece but to a different neighbor. When the traffic load

among peers is balanced, the number of data packets sent by

different peers would be comparable, which can be

demonstrated as a steeper slope in the cumulative

distribution function (CDF) curve (e.g. Fig.3). Moreover,

when peers are properly loaded, large portion of the piece

requests can be entertained in time and the number of

repeated piece requests should be small.

From the system’s point of view, balance the traffic load

helps to boost the uplink bandwidth utilization of peers in

the network from which the server will benefit in saving its

uplink bandwidth. To this end, we record the server uplink

bandwidth consumption every 10 seconds.

To show the efficiency of our proposed algorithm, we

compare it with the randomized request-peer selection

algorithm.

B. Simulation Setup and Results

We evaluate the proposed request-peer selection

algorithm through simulations based on a simulator from

ASTRI [11]. The simulator is built on NS2 and simulates

packet-level detail of a P2P live streaming network. The

simulator is well tested and is used both for academic

research and industrial deployments [6][12].

To focus only on the request-peer selection strategy,

unless otherwise stated, the following generalized system

framework is used throughout the simulation: (1) One

streaming source that continuously encodes the live video

content with the average streaming bit rate of 456Kbps stays

in the network throughout the simulation. The encoded

stream is segmented into multiple pieces each contains the

data for one second playback; (2) Each peer in the network

keeps a list of neighbors with which it periodically

exchanges their buffer maps; (3) A simple section based

piece selection strategy is used where the prefetching

window, with a size of 48 pieces/seconds, is divided into

three sections each with different size and saturability, as

shown in Fig. 2. A peer randomly selects a piece from a

lower numbered section to request until the saturability of

that section is satisfied before retrieving a piece from the

next section. A peer never requests a piece beyond the

request window; (4) At any time, each peer can have up to N

pending/on-going piece requests (set to 10 in our simulation)

and among them, no more than D requests to the same peer

(set to 3 in our simulation); (5) At any time, a peer can serve

piece requests on their order of arrivals. (6) Each peer starts

video playback after receiving the first sixteen pieces and

resumes the playback according to playback policy listed in

sub-section A; (7) Peers join the streaming session with an

uniformly distributed arrival rate of 10 peers per second

until all 300 peers are in the system. They would not leave

the network throughout the simulation; other parameters

used in the simulation are summarized in Table I.

3230

We consider the heterogeneous scenario, where peers’

download bandwidth are the same, while half of them are of

higher uploading capacity and the other half are of lower

upload bandwidth. Peers in the network form a star topology

and the one way propagation delay between a peer and the

central router is set to 5ms. The CDF curve of different

metrics collected at each peer is used to demonstrate the

performance difference and the corresponding average

values are summarized in Table II.

Since peers in our simulations have different upload

bandwidth, we normalized the number of data packets sent

by each peer by its upload bandwidth and depict its CDF

curve in Fig. 3. We can find that our request-peer selection

algorithm shows a much steeper slope than the randomized

algorithm. That shows the difference of number of data

packets sent (per unit upload bandwidth) is smaller among

peers using our algorithm. In other words, this indicates that

the piece requests are evenly distributed among peers.

According to the number of repeated piece requests

performance shown in Fig. 4, it is can be easily seen that by

adopting our proposed request-peer selection algorithm,

peers in the network generate much fewer repeated requests

which is only about one sixth of the randomized algorithm.

For the perceived playback quality, we examine the total

caching time, restart count and start-up delay, which are

shown in Fig. 5, Fig. 6 and Fig. 7, respectively. We can see

that with our algorithm, each peer spends less time in

caching, and experiences less restarts. It is understandable

that there is no obvious improvement in start-up delay. This

is because a request-peer selection does not directly address

the startup performance.

 Fig. 8 shows our proposed algorithm reduces the server

load significantly as compared to the random algorithm.

Figure 5. Total caching time

Figure 6. Restart count

Figure 7. Start-up delay

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Caching Time(sec.)

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Random

Proposed

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Restart Count

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Random

Proposed

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Start-up Delay(sec.)

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Random

Proposed

Figure 8. Server load

Table II. AVERAGE VALUE COMPARISON

 Random Proposed

Start-Up Delay(Sec.) 14.97 15.27

Restart Count 0.49 0.26

No. of Repeated Requests 304.10 53.17

Total Caching Time(Sec.) 6.23 0.37

0 5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

16

18

Simulation Time(sec.)

S
e
rv

e
r

L
o
a
d
 D

e
p
a
rt

u
re

(M
b
p
s
)

Random

Proposed

3231

This can be attributed to the increase of the peer upload

bandwidth utilization when traffic is well balanced.

IV. CONCLUSION

In this paper, we proposed an efficient request-peer

selection algorithm for P2P live streaming system. In our

algorithm, the probability of peers to be selected as the piece

provider is calculated according to their content availabilities

and their loading measured by service response time.

Through extensive simulations, we showed that our

algorithm distributes the traffic load more evenly among

peers. As a result, the peers’ uplink bandwidth is better

utilized and the streaming server load is reduced, meanwhile,

the quality of experience is also improved.

REFERENCES

[1] PPLive: http://www.pptv.com/.

[2] PPstream: http://www.ppstream.com/.

[3] X. Zhang, J. Liu, B. Li, and T. S. P. Yum, “Coolstreaming/donet: A
data-driven overlay network for efficient live media streaming,”
INFOCOM, 2005.

[4] Y. Zhou, D.M. Chiu, J.C.S. Lui, “A simple model for analyzing P2P
streming protocols,” Proc. ICNP, 2007.

[5] K. W. Hwang, V. Misra, and D. Rubenstein, “Stored media streaming
in bittorrent-like p2p networks,” Tech Report, Columbia University,
NY,no. cucs-024-08, 2008.

[6] Z. Wen, N.W. Liu, K. L. Yeung and Z. B. Lei, “Closest playback-
point first: a new peer selection algorithm for p2p vod systems,” to
appear in GLOBECOM 2011

[7] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol.12, no.10, pp. 1094-1104, Oct., 2001.

[8] K.Graffi, S.Kaune, K.Pussep, A.Kovacevic and R. Steinmetz, “Load
balancing for multimedia streaming in heterogeneous peer-to-peer
systems,” Proc. of NOSSDAV, 2008.

[9] Y. Wang, T.Z.J.Fu and D.M. Chiu, “Analysis of load balancing
algorithms in p2p streaming,” Proc. SIAM, 2008

[10] TZJ Fu, DM Chiu and ZB Lei, "Designing QoE Experiments to
Evaluate Peer-to-Peer Streaming applications," VCIP 2010, July 2010

[11] ARSTRI: http:// www.astri.org/.

[12] J. Huang, G.Cheng, J. Liu, and D.M.Chiu et.all, “A simulation tool
for the design and provisioning of p2p assisted content distribution
plateforms,” under review, A copy is available at:
http://personal.ie.cuhk.edu.hk/~dmchiu/references/P2P_Simulation.pd
f.

3232

