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Abstract—Unlike peer-to-peer (P2P) file sharing, P2P live 

streaming systems have to meet real-time playback constraints, 

which makes it very challenging yet crucial to maximize the 

peer uplink bandwidth utilization so as to deliver content 

pieces in time. In general, this is achieved by adopting tailor-

made piece selection and request-peer selection algorithms. The 

design philosophy is to regulate the network traffic and to 

balance the load among peers.  In this paper, we propose a new 

request-peer selection algorithm. In particular, a peer in the 

network estimates the service response time (SRT) between 

itself and each neighboring peer.  An SRT is measured from 

when a data piece request is sent until the requested piece 

arrives. When a peer makes a piece request, the neighbor with 

smaller SRT and fewer data pieces would be favored among 

potential providers. This is because smaller SRT implies excess 

serving capacity and fewer data pieces suggests less piece 

requests received. We evaluate the performance of our 

request-peer selection algorithm through extensive packet level 

simulations. Our simulation results show that the traffic load 

in the network is better balanced in the sense that the 

difference of the normalized number of data packets uploaded 

by each peer is getting smaller and the number of repeated 

piece requests generated by each peer (due to request failure) 

is significantly reduced. We also found that the load of 

streaming server is reduced, and the overall quality of service, 

measured by playback continuity, startup delay etc, is 

improved as well. 

I. INTRODUCTION  

P2P live streaming, representing the state of the art 

technique to stream live media, has been attracting 

increasing attentions from both academia and industry (e.g. 

[1][2][3]). By utilizing the P2P infrastructure, the live 

streaming system can easily scale up to millions of users as 

the server load is largely distributed among peers in the 

network.   

As compared to P2P file sharing system, the real-time 

playback constraint of live media poses challenges in 

designing efficient live streaming systems. Specifically, the 

video streaming largely relies on the collaborative piece 

exchange among peers in the network. It is essential for the 

peers to spread out the rare pieces as quickly as possible. 

The content variety incurred at peer neighborhood could 

help to maximize the uplink bandwidth utilization. On the 

other hand, the urgency of each piece should also be 

considered in order to meet playback constraint. To address 

this issue, researchers have mainly focused on designing 

efficient piece selection algorithms. For a given set of 

missing pieces, a piece selection algorithm decides which 

piece should a peer requests first [4]. The key insight is that 

piece request should take not only the content rarity but also 

the timeliness requirement into consideration [4][5]. 

 In contrast to piece selection algorithm, fewer efforts 

have been spent on a subsequent yet equally important 

problem of request-peer selection [6].  For a selected data 

piece and a set of potential piece providers, the task of 

request-peer selection is to determine which 

neighbor/provider should be approached for the selected 

piece. Properly allocating the piece request to different 

neighbors would help to balance the load at each peer. This 

would help to ensure the neighbors of a peer always have 

enough bandwidth to serve incoming piece requests in time. 

This could also help to decrease the origin streaming server 

load. 

In this paper, we focus on designing request-peer 

selection algorithms. The simplest approach is to pick up a 

potential provider randomly. It is interesting to note that 

contrary to the conventional wisdom, such a randomized 

algorithm does not balance the load among peers. According 

to the classic ball-and-bin model [7], randomized algorithm 

tends to overload some of the nodes with extremely high 

probability. In CoolStreaming [3], the peer with the highest 

uploading bandwidth is selected as piece provider. However, 

it is very difficult to predict each neighbor’s uploading 

bandwidth dedicated to serve a particular peer. In the 

context of P2P video-on-demand (VoD) streaming, closest 

playback-point first (CPF) is proposed in [6], where peer 

sends the piece request to the neighbor with the closest 

playback-point with respect to itself. Since such peer pairs 

may have larger buffer window overlap, they can thus better 

utilize each other’s uplink capacity for mutual piece sharing. 

But CPF is not suitable for P2P live streaming because live 

streaming playback is relatively synchronized and the 

playback-point difference among peers will be too small. 

Recently, an analytical model is constructed to study the 

load balancing performance in P2P streaming in [9]. To 

facilitate the analysis, it assumes that all neighbors have the 

piece a requesting peer wants so that the requesting peer can 

adaptively adjust the number of piece requests sent to each 

neighbor to balance among neighbors. To limit the total 

number of neighbors allowed, it finds a group of neighbors 
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based on the measured service response time. Our work 

differs from [9] mainly in that: 1) we consider a more 

practical request-peer selection scenario where only a small 

subset of the neighbors has the piece selected by a peer; 2) 

we evaluate our algorithm through extensive packet level 

simulations and show the strength of our algorithm in terms 

of both server load deduction and quality of service. Note 

that the analytical model in [9] is verified by high level 

simulation with stronger assumptions. 

The rest of the paper is organized as follows. In Section 

II, we present the proposed request-peer selection algorithm. 

In Section III, we introduce our packet level simulation 

setup as well as the performance comparison between our 

proposed algorithm and the randomized algorithm. Lastly, 

we conclude the paper in Section IV. 

II. LOAD BALANCED REQUEST-PEER 

SELECTION  

A peer in live streaming system maintains a data piece 

pre-fetch window which shifts/slides gradually as the 

playback point moves [3]. Without loss of generality, we 

assume a peer is only interested in getting the pieces in the 

pre-fetch window for smooth playback. (Note that the pre-

fetch window of a VoD system is much bigger, and that of a 

file sharing system is the biggest, and covers every piece of 

the file.) As compared to P2P VoD streaming systems, peers 

in the live streaming system tend to have similar playback-

point.  Their pre-fetch windows tend to be significantly 

overlapped and this facilitates mutual piece exchange 

among peers. This also implies that more neighboring peers 

have the missing piece the requesting peer wants. Given a 

set of potential piece providers in the neighborhood, how to 

decide which neighbor should be contacted for retrieving 

the data piece already selected by the piece selection 

algorithm?  From the requesting peer’s point of view, a 

proper selection of piece provider can help to retrieve the 

missing piece in time for playback; otherwise the peer 

would either suffer from video quality degradation or 

experience a playback suspension. From the system’s 

perspective, a proper piece provider selection can balance 

the traffic load in the network so that peers can better utilize 

their uplink capacity to deliver the most urgent pieces. 

Moreover, due to the more efficient peer upload bandwidth 

utilization, the uplink bandwidth consumption at the server 

can be reduced. 

Due to simplicity and runtime efficiency, the 

randomized algorithm for request-peer selection is quite 

popular.  But the analysis of the classic ball-and-bin model 

in [7] suggests that such a randomized scheme would 

overload some peers with extremely high probability when 

the network scales up. To take a closer look at the situation 

in the context of P2P live streaming system, we use the 

following example to illustrate this problem.   

Let us consider the homogeneous case first, where peers: 

     ,       and       are the neighbors of       (please 

refer to Fig. 1.) and they all have data piece j. If the random 

algorithm is used by       to select a supplier for piece j,  

the three neighbors would get equal opportunity to be 

selected:  

   =    =    = 
 

 
 , 

Note: n is the number of neighbors having piece j; here n=3. 

It is obvious that smaller n would lead to greater   . That 

means a rare piece (and thus its owner) has a higher 

probability being requested/selected. 

Let     denote the load (i.e. the amount of requests 

received) on the uplink of peer      ; and 

let                                              ’s pre-

fetch window. We have 

   =     +     +    +…+      

   =     +    +    +…+      

   =     +    +    +…+      

Since    >     >    ,    has the largest number of 

probability terms (i.e. the number of           ) while    gets 

the smallest    . As all the probability terms are positive, 

adding more terms would likely lead to bigger value, which 

in turn indicates heavier loading of the corresponding peer. 

Besides, the more pieces a peer buffers, the higher chance it 

would buffer some rare pieces and would thus have greater 

chance to be selected as piece provider. 

 Considering both the buffer occupancy of the pre-fetch 

window and the rarity of data pieces, it is very likely that: 

   >     >   . In other words, it is very likely that       

would be selected to serve more requests than      and 

      , and thus becomes a hotspot. This uneven traffic load 

is not desirable. The uplink capacity of        should be 

better utilized to deliver the two pieces in its pre-fetch 

window, while       can focus on delivering pieces       

does not have. In doing so, the overall uplink bandwidth can 

be better utilized. From this example, we can see that the 

content availability at each peer plays an important role in 

request-peer selection.    

In practice, peers in the P2P live streaming system have 

different upload/download bandwidths. In some cases the 

differences can be quite significant (e.g. ADSL v.s. Ethernet 
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Figure 1.  P2P Live Streaming 
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based access technology). The randomized algorithm above 

neglects the differences in each peer’s upload capability, 

which undermines load balancing. Let us reuse the previous 

example to illustrate this problem. Assume the upload 

bandwidth of each peer is    ,     and    , respectively. 

And            . With the randomized algorithm, 

     gets the most requests to serve while its upload 

bandwidth is the least among the three potential providers, 

whereas      with the largest upload capacity but receives 

the least requests. In this case,      is overloaded 

while      ’s upload bandwidth is underutilized. This 

example shows that the number of piece requests 

entertained by each peer should be proportional to its uplink 

capacity. 

Based on the insights we obtained from the two 

examples above, a new request-peer selection algorithm is 

designed by taking both potential provider’s content 

availability and upload capacity into consideration. The idea 

is that: potential providers with larger upload capacity and 

fewer data pieces should be given higher priority to be 

selected. Without loss of generality, let    be the probability 

of potential provider peer i to be selected as the piece 

supplier, and    is given by:  

                           
  

∑  
   

 ̅    

∑    
                             (1) 

In (1),    is the upload bandwidth of peer i dedicated to 

serve the requesting peer;    is the number of pieces in peer 

i’s buffer;  ̅ is the mean value of all   ; λ is a weighting 

factor that determines the relative importance of the two 

factors: data rarity and upload bandwidth. 

 Since the upload bandwidth at a peer is shared among 

all potential network applications running on the end host, it 

is very difficult (if not impossible) to determine     , the 

upload bandwidth dedicated to serving each neighboring 

peer. Besides,    is time varying with the network load. We 

take an alternative approach. We adopt the service response 

time (SRT) instead of    . SRT is defined as the time 

duration from a data piece request is sent to the moment the 

requested piece is received. It is a good indication of 

whether a neighbor is overloaded or not. Therefore, the 

probability of peer    is selected by our request-peer 

selection algorithm becomes: 

                            
 
 

   
  

∑ 
 

   
  

  λ
 ̅    

∑    
                              (2) 

    is the expected service response time of peer i. To 

smooth out the fluctuation, we take the moving average of 

each response time sample. More specifically, each     is 

calculated according to the following formula: 

                                                            (3) 

where α is a constant between 0 and 1, by adjusting the 

value of α we can adjust the weighting of the old sampled τ 

and the latest         . According to our simulation results, 

we found that 0.7 is a good value for α as more emphasis is 

paid on the historical value and big spike introduced by the 

fresh sample is avoided. 

Note that peers in the system need to keep records of all 

its neighbors’ service response time τ each time when a 

piece is successfully downloaded, the neighbor’s SRT is 

updated according to (3). In addition, the content 

availability information of each neighbor is derived from the 

periodic buffer map exchange among peers.  While making 

the request-peer selection, the requesting peer selects a piece 

provider according to the probability in (2).   

Note that a specific peer may have different service 

response times to different peers due to the heterogeneity in 

the network. The response time based request-peer selection 

helps to stabilize the system. Specifically, a peer with 

smaller SRT would be favored by its neighbors thus serves 

more requests. Along with the gradual increase of the 

request queue size, the peer’s response time will increase (as 

detected by its neighbors). Such an increase will lead to the 

decrease of piece requests generated from its neighbors thus 

protect the peer from being overloaded.  

III. PERFORMANCE EVALUATION 

A. Performance Metrics 

For each peer in the system, we use three metrics to 

capture its quality of experience: the start-up delay, the total 

caching time; and the restart count [6]. Start-up delay is the 

time duration from the instance when a peer joins the 

system (i.e. approaching the tracker for a list of active peers) 

to the moment the peer has retrieved sufficient pieces and 

starts playback. The total caching time captures the total 

amount of time during which a peer suspends its playback 

waiting for the missing pieces to arrive. In our simulations, 

we adopt the simple playback control scheme as discussed 

in [10]. Briefly, a peer would suspend its playback 

whenever the next piece to play is not available for certain 

time duration (set to 3 seconds in our simulation), after 

which the peer will resume its playback from the next 

available piece in the local buffer window. (Note that the 3 

seconds waiting also contributes to the total caching time 

measure.) For the worst case that there is no subsequent 

piece available in the local buffer for playback, the peer 

quits and rejoins the system by contacting the tracker again. 

We use the restart count to capture the total number of such 

events. 

In order to investigate whether the traffic load is well 

balanced among peers, we closely monitor two metrics at 

each peer: the number of data packets sent, and the number 

of repeated piece requests sent. The former captures the 

total number of data packets sent by a peer during the 

session. And the latter is used to trace the piece request 

timeout events. Note that a piece request timer (3 sec.) is 

3229



Table I.  SIMULATION PARAMETERS 

Simulation Time 500 sec. 

Peer Join Speed 10 peers/sec. 

Number of Peers 300 

Number of Packets per Piece 94 

Avg. Piece Size 58KB(456Kbps) 

Peer bandwidth Set I (Down/Up) 10/2 Mbps 

Peer bandwidth Set II (Down/Up) 10/0.5 Mbps 

Server Bandwidth (Down/Up) 20/20 Mbps 

Max. Piece requests to one peer 3 

λ  0.9 

α 0.7 

I

8

Playback Point

Saturability=100%

Random

Saturability=80%

Random

Saturability=50%

Random

II III

16 24

 

Figure 2.  Piece selection strategy used in simulation     

 

Figure 3.  Normalized number of packets sent 

 

Figure 4.  Number of repeated requests 
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triggered whenever a piece request is sent. On the expiry of 

the timer and the piece is not completely received, the 

requesting peer generates another (repeated) request for the 

same piece but to a different neighbor. When the traffic load 

among peers is balanced, the number of data packets sent by 

different peers would be comparable, which can be 

demonstrated as a steeper slope in the cumulative 

distribution function (CDF) curve (e.g. Fig.3). Moreover, 

when peers are properly loaded, large portion of the piece 

requests can be entertained in time and the number of 

repeated piece requests should be small.   

From the system’s point of view, balance the traffic load 

helps to boost the uplink bandwidth utilization of peers in 

the network from which the server will benefit in saving its 

uplink bandwidth. To this end, we record the server uplink 

bandwidth consumption every 10 seconds.    

To show the efficiency of our proposed algorithm, we 

compare it with the randomized request-peer selection 

algorithm.  

B. Simulation Setup and Results 

We evaluate the proposed request-peer selection 

algorithm through simulations based on a simulator from 

ASTRI [11]. The simulator is built on NS2 and simulates 

packet-level detail of a P2P live streaming network. The 

simulator is well tested and is used both for academic 

research and industrial deployments [6][12].  

To focus only on the request-peer selection strategy, 

unless otherwise stated, the following generalized system 

framework is used throughout the simulation: (1) One 

streaming source that continuously encodes the live video 

content with the average streaming bit rate of 456Kbps stays 

in the network throughout the simulation. The encoded 

stream is segmented into multiple pieces each contains the 

data for one second playback; (2) Each peer in the network 

keeps a list of neighbors with which it periodically 

exchanges their buffer maps; (3) A simple section based 

piece selection strategy is used where the prefetching 

window, with a size of 48 pieces/seconds, is divided into 

three sections each with different size and saturability, as 

shown in Fig. 2. A peer randomly selects a piece from a 

lower numbered section to request until the saturability of 

that section is satisfied before retrieving a piece from the 

next section. A peer never requests a piece beyond the 

request window; (4) At any time, each peer can have up to N 

pending/on-going piece requests (set to 10 in our simulation) 

and among them, no more than D requests to the same peer 

(set to 3 in our simulation); (5) At any time, a peer can serve 

piece requests on their order of arrivals. (6) Each peer starts 

video playback after receiving the first sixteen pieces and 

resumes the playback according to playback policy listed in 

sub-section A; (7) Peers join the streaming session with an 

uniformly distributed arrival rate of 10 peers per second 

until all 300 peers are in the system. They would not leave 

the network throughout the simulation; other parameters 

used in the simulation are summarized in Table I.  
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We consider the heterogeneous scenario, where peers’ 

download bandwidth are the same, while half of them are of 

higher uploading capacity and the other half are of lower 

upload bandwidth. Peers in the network form a star topology 

and the one way propagation delay between a peer and the 

central router is set to 5ms. The CDF curve of different 

metrics collected at each peer is used to demonstrate the 

performance difference and the corresponding average 

values are summarized in Table II.  

Since peers in our simulations have different upload 

bandwidth, we normalized the number of data packets sent 

by each peer by its upload bandwidth and depict its CDF 

curve in Fig. 3. We can find that our request-peer selection 

algorithm shows a much steeper slope than the randomized 

algorithm. That shows the difference of number of data 

packets sent (per unit upload bandwidth) is smaller among 

peers using our algorithm. In other words, this indicates that 

the piece requests are evenly distributed among peers. 

According to the number of repeated piece requests 

performance shown in Fig. 4, it is can be easily seen that by 

adopting our proposed request-peer selection algorithm, 

peers in the network generate much fewer repeated requests 

which is only about one sixth of the randomized algorithm.  

For the perceived playback quality, we examine the total 

caching time, restart count and start-up delay, which are 

shown in Fig. 5, Fig. 6 and Fig. 7, respectively. We can see 

that with our algorithm, each peer spends less time in 

caching, and experiences less restarts.  It is understandable 

that there is no obvious improvement in start-up delay. This 

is because a request-peer selection does not directly address 

the startup performance. 

 Fig. 8 shows our proposed algorithm reduces the server 

load significantly as compared to the random algorithm. 

 

 

Figure 5.  Total caching time 

 

Figure 6.  Restart count 

 

Figure 7.  Start-up delay 
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Figure 8.  Server load 

Table II.  AVERAGE VALUE COMPARISON 

 Random Proposed 

Start-Up Delay(Sec.) 14.97 15.27 

Restart Count 0.49 0.26 

No. of Repeated Requests 304.10 53.17 

Total Caching Time(Sec.) 6.23 0.37 
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This can be attributed to the increase of the peer upload 

bandwidth utilization when traffic is well balanced.  

IV. CONCLUSION 

In this paper, we proposed an efficient request-peer 

selection algorithm for P2P live streaming system. In our 

algorithm, the probability of peers to be selected as the piece 

provider is calculated according to their content availabilities 

and their loading measured by service response time. 

Through extensive simulations, we showed that our 

algorithm distributes the traffic load more evenly among 

peers. As a result, the peers’ uplink bandwidth is better 

utilized and the streaming server load is reduced, meanwhile, 

the quality of experience is also improved.  
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