384 research outputs found

    Insights into Nuclear Clusters in 28^{28}Si via Resonant Radiative Capture Measurements

    No full text
    International audienceThe heavyion radiative capture reaction 12C(16O,γ\gamma)28Si has been studied at three energies on( ELab = 20.0 and 21.2 MeV) and off( ELab = 20.7 MeV) resonance at Triumf (Vancouver) using the stateoftheart Dragon 0° spectrometer and its very efficient associated BGO γ\gamma array. Intermediate states around Ex = 11.5 MeV, carrying a large part of the resonant flux have been observed for the first time in this system. The nature of those doorway states is discussed in terms of recently calculated cluster bands in 28Si. The results are compared to a recent similar investigation of the 12C(12C,γ\gamma)24Mg reaction

    Decay Modes of Narrow Molecular Resonances

    No full text
    présenté par Sandrine Courtin (DRS-IPHC)The heavy-ion radiative capture reactions 12C(12C,γ)24Mg^{12}C(^{12}C,\gamma)^{24}Mg and 12C(16O,γ)28Si^{12}C(^{16}O,\gamma)^{28}Si have been performed on and off resonance at TRIUMF using the Dragon separator and its associated BGO array. The decay of the studied narrow resonances has been shown to proceed predominantly through quasi-bound doorway states which cluster and deformed configurations would have a large overlap with the entry resonance states

    Spectroscopy of Po194

    Get PDF
    Prompt, in-beam γ rays following the reaction Yb170 + 142 MeV Si28 were measured at the ATLAS facility using 10 Compton-suppressed Ge detectors and the Fragment Mass Analyzer. Transitions in Po194 were identified and placed using γ-ray singles and coincidence data gated on the mass of the evaporation residues. A level spectrum up to J10 was established. The structure of Po194 is more collective than that observed in the heavier polonium isotopes and indicates that the structure has started to evolve toward the more collective nature expected for deformed nuclei

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Identification of 181Hg and shape coexistence in odd-A Hg isotopes

    Get PDF
    In-beam γ-ray transitions in 181Hg, the lightest odd-A Hg isotope known thus far, have been identified from fragment mass-γ and γ-γ coincidence measurements. Five prolate deformed rotational bands were placed in the level scheme. A decoupled band built on the strongly prolate deformed 1/2-[521] ground state was observed up to 29/2-. A 5/2-[512] configuration is suggested for a pair of strongly coupled bands displaying no signature splitting. The other two bands are also signature partner bands. They are populated with the largest intensity and exhibit splitting. They have been associated with the mixed neutron i13/2 orbitals and are proposed to decay to an i13/2 isomeric state associated with an oblate state

    Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Get PDF
    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics. Keywords: Cold Electronics; Noise; MicroBooNE; Time projection chambers; Noble liquid detectors; Neutrino detector

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link
    • …
    corecore