78 research outputs found

    Spatial Distribution of Drifted-wood Hazard following the July 2017 Sediment-hazards in the Akatani river, Fukuoka Prefecture, Japan

    Get PDF
    In recent years, heavy rainfall leading to floods, landslides and debris-flow hazards have had increasing impacts on communities in Japan, because of climate change and structural immobilism in a changing and ageing society. Decreasing rural population lowers the human vulnerability in mountains, but hazards can still leave the mountain to the plains and sea, potentially carrying drifted-wood. The aim of the paper is to measure the distribution of wood-debris deposits created by the 2017 Asakura disaster and to rethink the distribution and spatial extension of associated disaster-risk zoning. For this purpose, the authors: (1) digitized and measured the distribution of drifted-wood, (2) statistically analyzed its distribution and (3) calculated the potential impact force of individual drifted timber as a minimal value. The results have shown that there is a shortening of the wood debris as they travel downstream and that the geomorphology has an important control over deposition zones. The result of momentum calculation for different stems’ length show spatially differentiated hazard-zones, which limit different disaster-risk potentials. From the present finding, we can state that we (1) need to develop separate strategies for sediments and wood debris (2) and for wood hazards, zonations can be generated depending on the location and the size of the deposited trees that differs spatially in a watershed

    Les glissements de terrain des versants cĂŽtiers du Pays d'Auge (Calvados) : Morphologie, fonctionnement et gestion du risque.

    Get PDF
    The present study is focused on complex rotational-translationnal landslides occurring along the coastal slopes of Calvados. The landslides kinematics is characterized by slow and permanent activity ranging from a few millimeters to a few centimeters per year. The slow velocity can be affected by major accelerations explained by combined triggering factors, as prolonged rainfall. The complexity of these phenomena is linked to their temporal and spatial heterogeneity dynamics. Furthermore, their location in urban coastal environment induces high socio-economic issues. For better understanding of these complex landslides processes, the study focused on: * (1) the internal structure characterization, with the help of geophysical, geotechnical and geomorphological data; * (2) the hydrological and hydrogeological specificities of the slope with hydrodynamics characterization; * (3) the kinematics of the landslides measurement from monitoring network, to put in forward the spatial and temporal heterogeneities; * (4) the identification of critical piezometric and rainfall thresholds inducing acceleration; * (5) the assessment of consequences and the risk management linked to several acceleration crisis. And finally the research focused on the actual element at risk and landslide extension possibilities.Cette thĂšse porte sur l'Ă©tude de glissements de terrain rotationnels-translationnels complexes localisĂ©s en bordure littorale du Calvados. Ces glissements se manifestent par une activitĂ© rĂ©guliĂšre, avec des dĂ©placements saisonniers variant de quelques millimĂštres Ă  quelques centimĂštres par an. Ils revĂȘtent un caractĂšre plus spectaculaire lorsque les dĂ©placements s'accĂ©lĂšrent brutalement sous l'action de facteurs de dĂ©clenchement divers et combinĂ©s. La complexitĂ© de ces processus hydro-gravitaires rĂ©side dans leur fonctionnement hĂ©tĂ©rogĂšne dans le temps, et dans leur localisation dans un environnement littoral urbanisĂ©. Ces secteurs sont donc des zones Ă  risque Ă  fort enjeux socio-Ă©conomiques. Pour mieux comprendre le fonctionnement de ces glissements, les travaux se focalisent sur : * (1) la caractĂ©risation de la structure interne des glissements Ă  l'aide de donnĂ©es gĂ©ophysiques, gĂ©otechniques et gĂ©omorphologiques ; * (2) les spĂ©cificitĂ©s hydrologiques et hydrogĂ©ologiques du versant et la caractĂ©risation des paramĂštres hydrodynamiques des corps aquifĂšres qui composent ces glissements ; * (3) la caractĂ©risation de la cinĂ©matique de versant en surface et en profondeur Ă  partir d'un rĂ©seau de surveillance et la mise en Ă©vidence des variabilitĂ©s spatiales et temporelles des dĂ©placements actuels ; * (4) l'identification de seuils piĂ©zomĂ©triques ou pluviomĂ©triques qui expliqueraient le dĂ©clenchement des instabilitĂ©s brusques et saisonniĂšres ; * (5) l'Ă©valuation des consĂ©quences et la gestion du risque suite aux diffĂ©rentes crises d'accĂ©lĂ©ration et l'Ă©valuation du risque actuel Ă  partir des consĂ©quences potentielles et des scĂ©narios d'extension des glissements

    Fusion network with attention for landslide detection. Application to Bijie landslide open dataset”

    No full text
    Remote sensing techniques are now widely spread for the early detection of ground deformation, implementation of warning systems in case of imminent landslide triggering, and medium- and long-term slope instability monitoring. The large breadth of data available to the scientific community, associated with processing techniques improved as the data volume was increasing, has led to noticeable developments in the field of remote sensing data processing, using machine learning algorithms and more particularly deep neural networks. This arsenal of data and techniques is necessary for the present scientific challenges the community of researchers on landslides still have to meet. As landslides can be complex, for risk management and disaster mitigation strategies, it is necessary to have a precise idea of their location, shape, and size to be studied and monitored. The challenge aims to automate landslide detection and mapping, especially through learning methods. Machine learning methods based on Deep Neural Networks have recently been employed for landslide studies and provide promising efficient results for landslide detection. In this study, we propose an original neural network for landslide detection. More precisely, we exploit a fusion network dealing with optical images on the one hand and Digital Elevation Models on the other hand. To improve the results, attention layers [3] (able to stabilize the training and more precise results) as well as mix up techniques [4] (able to generalize more efficiently) are exploited. The model was trained and tested on the open Bijie landslide dataset. Keywords: Remote sensing for landslide monitoring and detection, landslide detection, deep neural networks, attention

    Des instabilités de versant aux sources sédimentaires : étude de la catastrophe géomorphologique du 5-6 juillet 2017 dans le bassin-versant du Chikugo (Kyƫshƫ, Japon)

    No full text
    Le 5-6 juillet 2017, sur l’üle de KyĆ«shĆ« (Japon), des pluies torrentielles ont dĂ©clenchĂ© plus de 1 500 mouvements de terrain dans les montagnes au nord d’Asakura Ă  l’origine d’une catastrophe hyro-sĂ©dimentaire majeure (41 victimes). Cet Ă©vĂ©nement reprĂ©sente un laboratoire Ă  ciel ouvert pour amĂ©liorer la comprĂ©hension des cascades sĂ©dimentaires des hydrosystĂšmes montagnards influencĂ©es par des sources sĂ©dimentaires variĂ©es (e.g., mouvements de terrain). Pour comprendre les relais de processus lors de ce type d’évĂšnement, (i) les zones sources ont Ă©tĂ© cartographiĂ©es, (ii) leur nature et origine dĂ©finies, et (iii) une typologie des modalitĂ©s de (dĂ©)couplages dans ces hydrosystĂšmes a Ă©tĂ© construite. Les zones d’instabilitĂ© cartographiĂ©es reprĂ©sentent environ 6,7 kmÂČ soit 3,5 % de la surface totale de la zone d’étude (193 kmÂČ) avec une erreur comprise entre 58 % et 97 %. Les sources sĂ©dimentaires sont principalement des glissements de terrain et des coulĂ©es de dĂ©bris. Les couplages latĂ©raux versant-chenal sont majoritaires, en particulier dans les petits bassins versants torrentiels (vallĂ©e d’ordre 0). Les dĂ©couplages latĂ©raux prennent la forme d’une absence de contact entre les sources sĂ©dimentaires et les cours d’eau causĂ©e parfois par les plaines alluviales qui constituent des zones tampons. Les barrages sĂ©dimentaires (SABO dams) et les rares grands glissements favorisent les dĂ©couplages longitudinaux. Les volumes sĂ©dimentaires produits par cette catastrophe sont estimĂ©s entre 3,9 et 13,4 millions de mÂł. Les diffĂ©rentes modalitĂ©s de (dĂ©)couplages produisent des disparitĂ©s dans les apports sĂ©dimentaires des zones sources avec des influences anthropiques encore ambiguĂ«s.On the 5th and the 6th July 2017, heavy rainfalls triggered more than 1,500 landslides in the mountains north of Asakura in the north of KyĆ«shĆ« Island (Japan), resulting in 41 casualties and a geomorphological “disaster”. This event represents an open-air laboratory to improve the understanding of sedimentary cascades in these mountain hydrosystems from sedimentary sources (e.g., landslides). For this purpose, (i) the source zones were mapped, (ii) their nature and origin defined, and (iii) a typology of (de)coupling modalities was constructed. The mapped instability zones represent about 6.7 kmÂČ, i.e., 3.5% of the total surface area of the study area (193 kmÂČ) with an error between 58% and 97%. The sedimentary sources are mainly slides/slope failures and debris avalanche/mudflow. Lateral hillslope-channel coupling is particularly prevalent in small torrential catchments (0-order valley). Lateral decouplings take the form of a lack of contact between sedimentary sources and rivers, sometimes caused by alluvial plains which constitute buffer zones. Sedimentary dams (SABO dams) and rare large landslides favour longitudinal decoupling. The sedimentary volumes produced by this “disaster” are estimated to be between 3.9 and 13.4 million mÂł. The different cases of “(de)coupling” have produced disparities in the sediment supply from the sedimentary sources with still ambiguous anthropogenic influences

    Geomorphic analysis of catchments through connectivity framework: old wine in new bottle or efficient new paradigm?

    No full text
    1. A trendy concept for old questions 1.1. A recent and spectacular scientific upturn “Old wine in new bottle”, here is Bracken's skepticism (Bracken et al., 2015) regarding the concept of hydro-sedimentary connectivity at the conclusion of a special issue of Earth Surface Processes and Landforms, dealing specifically with connectivity. This skepticism is due to the recent and spectacular infatuation of geomorphologists for this concept, particularly perceptible in the rhythm of publications ..

    A Connectivity Approach to Agricultural Diffuse Pollution in Tropical Montane Catchments Dominated by Swidden Landscapes

    No full text
    Shifting cultivation is widely practiced in many tropical mountainous watersheds. Agricultural practices are changing with the intensification of activities and the development of industrial monocultures associated with increasing land use and the use of pesticides and fertilisers. These changes have consequences for the evolution of sediment transfers in watersheds, resulting in new vulnerabilities for the inhabitants. This article shows the evolution of structural connectivity over 5 years in the village of Houaylack-Vangven, located in northern Laos, and its potential links with agricultural diffuse pollution. To develop a structural source-to-sink model to understand sediment transfers, our method was based on open-access data and various geographical tools. Field surveys were conducted to identify areas vulnerable to erosion and sediment transfers. The sources and sinks were then located using remote sensing techniques and image interpretation to then characterise connectivity rates. Finally, the relationship between the sources and sinks was analysed by graph theory to explore the potentialities for assessing the connectivity and exposure of sediment sinks. The main results are twofold: sinks coincide with areas at risk of contamination by pesticides and fertilisers, and the structural connectivity increases with the increasing of the source surfaces (swidden plots) due to the ongoing agricultural transition

    Des instabilités de versant aux sources sédimentaires : étude de la catastrophe géomorphologique du 5-6 juillet 2017 dans le bassin-versant du Chikugo (Kyƫshƫ, Japon)

    No full text
    International audienceOn the 5th and the 6th July 2017, heavy rainfalls triggered more than 1,500 landslides in the mountains north of Asakura in the north of KyĆ«shĆ« Island (Japan), resulting in 41 casualties and a geomorphological “disaster”. This event represents an open-air laboratory to improve the understanding of sedimentary cascades in these mountain hydrosystems from sedimentary sources (e.g., landslides). For this purpose, (i) the source zones were mapped, (ii) their nature and origin defined, and (iii) a typology of (de)coupling modalities was constructed. The mapped instability zones represent about 6.7 kmÂČ, i.e., 3.5% of the total surface area of the study area (193 kmÂČ) with an error between 58% and 97%. The sedimentary sources are mainly slides/slope failures and debris avalanche/mudflow. Lateral hillslope-channel coupling is particularly prevalent in small torrential catchments (0-order valley). Lateral decouplings take the form of a lack of contact between sedimentary sources and rivers, sometimes caused by alluvial plains which constitute buffer zones. Sedimentary dams (SABO dams) and rare large landslides favour longitudinal decoupling. The sedimentary volumes produced by this “disaster” are estimated to be between 3.9 and 13.4 million mÂł. The different cases of “(de)coupling” have produced disparities in the sediment supply from the sedimentary sources with still ambiguous anthropogenic influences.Le 5-6 juillet 2017, sur l’üle de KyĆ«shĆ« (Japon), des pluies torrentielles ont dĂ©clenchĂ© plus de 1 500 mouvements de terrain dans les montagnes au nord d’Asakura Ă  l’origine d’une catastrophe hyro-sĂ©dimentaire majeure (41 victimes). Cet Ă©vĂ©nement reprĂ©sente un laboratoire Ă  ciel ouvert pour amĂ©liorer la comprĂ©hension des cascades sĂ©dimentaires des hydrosystĂšmes montagnards influencĂ©es par des sources sĂ©dimentaires variĂ©es (e.g., mouvements de terrain). Pour comprendre les relais de processus lors de ce type d’évĂšnement, (i) les zones sources ont Ă©tĂ© cartographiĂ©es, (ii) leur nature et origine dĂ©finies, et (iii) une typologie des modalitĂ©s de (dĂ©)couplages dans ces hydrosystĂšmes a Ă©tĂ© construite. Les zones d’instabilitĂ© cartographiĂ©es reprĂ©sentent environ 6,7 kmÂČ soit 3,5 % de la surface totale de la zone d’étude (193 kmÂČ) avec une erreur comprise entre 58 % et 97 %. Les sources sĂ©dimentaires sont principalement des glissements de terrain et des coulĂ©es de dĂ©bris. Les couplages latĂ©raux versant-chenal sont majoritaires, en particulier dans les petits bassins versants torrentiels (vallĂ©e d’ordre 0). Les dĂ©couplages latĂ©raux prennent la forme d’une absence de contact entre les sources sĂ©dimentaires et les cours d’eau causĂ©e parfois par les plaines alluviales qui constituent des zones tampons. Les barrages sĂ©dimentaires (SABO dams) et les rares grands glissements favorisent les dĂ©couplages longitudinaux. Les volumes sĂ©dimentaires produits par cette catastrophe sont estimĂ©s entre 3,9 et 13,4 millions de mÂł. Les diffĂ©rentes modalitĂ©s de (dĂ©)couplages produisent des disparitĂ©s dans les apports sĂ©dimentaires des zones sources avec des influences anthropiques encore ambiguĂ«s

    La gĂ©omorphologie des bassins-versants sous l’angle de la connectivité : est-ce rĂ©inventer la roue ou changer de paradigme ?

    No full text
    1. Un concept Ă  la mode pour des questionnements anciens 1.1. Un essor rĂ©cent et spectaculaire « Old wine in new bottle », autrement dit rĂ©inventer la roue, voici posĂ© le scepticisme de Bracken et al. (2015) concernant la connectivitĂ© hydro-sĂ©dimentaire lors de la conclusion d’un numĂ©ro spĂ©cial de la revue Earth Surface Processes and Landforms, portant spĂ©cifiquement sur ce sujet. Ce scepticisme est notamment liĂ© Ă  l’engouement rĂ©cent et spectaculaire des gĂ©omorphologues pour ce concept, part..

    Sediments sources typology and mapping based on remote sensed data analysis

    No full text
    International audienceBefore studying the sedimentary cascade from the point of view of connectivity, it is necessary to identifyand characterise the functioning of its components and elementary (de)couplings from the source zones.For this purpose, the open-air laboratory represented by the geomorphological disaster of 5-6 July in theAsakura region (Kyushu) allows us to study the sedimentary sources with an estimated sample of morethan 1500 mass movements triggered by the heavy rainfall during this High-Magnitude / Low-Frequency(HMLF) event.This work follows three stages: i) identification and mapping of source zones, ii) characterisation of theirnature and iii) estimation of their contribution to the sedimentary cascade.The mapping of source zones was carried out using multispectral satellite remote sensing combined witha machine-learning method. The images used are from the Pleiades sensor, which provides a very highresolution (VHR) spatial (0.50 m with Pansharpening) and spectral (RGB PIR). The semi-supervisedclassification was performed by the Random Forest learning algorithm using the Dzetsaka extension inQGIS. Bare soils on slopes are interpreted as instability zones subject to lateral transfer. The typology ofthe source areas was carried out in two steps. Firstly, the nature of the mass movements and therefore ofthe source zones was characterised using expert analysis methods associated with morphological criteria(length/width ratio). Secondly, the contribution of the source zones to the sedimentary cascade wasestimated using expert analysis methods and geomorphological criteria (e.g. types of contact, obstacles tosedimentary continuity, etc.).The mapped sedimentary sources represent 6.7 kmÂČ and 3.5% of the study area (193 kmÂČ). There is aspatial concentration of source areas in the southwest of the study area. The machine error of theclassification is about 97% and the operator error is 58%. The nature of the sedimentary sources ischaracterised by a broad spectrum of hydro-gravity processes that can be grouped mainly betweenslides/slope failures and flow-like landslide (e.g. debris avalanche, mud flow). These sedimentary sourcesactively contribute to the sedimentary cascade through generally efficient lateral and longitudinalcouplings despite local difficulties of sediment export due to decouplings or anthropogenic /environmental obstacles to sediment continuity
    • 

    corecore