592 research outputs found
Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths
High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source
An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes
We obtain an effective parametrization of the bulk electronic structure of
InP within the Tight Binding scheme. Using these parameters, we calculate the
electronic structure of InP clusters with the size ranging upto 7.5 nm. The
calculated variations in the electronic structure as a function of the cluster
size is found to be in excellent agreement with experimental results over the
entire range of sizes, establishing the effectiveness and transferability of
the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at
http://sscu.iisc.ernet.in/~sampan/publications.htm
The cuticle modulates ultraviolet reflectance of avian eggshells
ABSTRACT Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour
Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats
Objectives. Calcium phosphate cement (CPC) is promising for dental and craniofacial applications due to its ability to be injected or filled into complex-shaped bone defects and molded for esthetics, and its resorbability and replacement by new bone. The objective of this study was to investigate bone regeneration via novel macroporous CPC containing absorbable fibers, hydrogel microbeads and growth factors in critical-sized cranial defects in rats. Methods. Mannitol porogen and alginate hydrogel microbeads were incorporated into CPC. Absorbable fibers were used to provide mechanical reinforcement to CPC scaffolds. Six CPC groups were tested in rats: (1) control CPC without macropores and microbeads; (2) macroporous CPC + large fiber; (3) macroporous CPC + large fiber + nanofiber; (4) same as (3), but with rhBMP2 in CPC matrix; (5) same as (3), but with rhBMP2 in CPC matrix + rhTGF-beta 1 in microbeads; (6) same as (3), but with rhBMP2 in CPC matrix + VEGF in microbeads. Rats were sacrificed at 4 and 24 weeks for histological and micro-CT analyses. Results. The macroporous CPC scaffolds containing porogen, absorbable fibers and hydrogel microbeads had mechanical properties similar to cancellous bone. At 4 weeks, the new bone area fraction (mean +/- sd; n = 5) in CPC control group was the lowest at (14.8 +/- 3.3)%, and that of group 6 (rhBMP2 + VEGF) was (31.0 +/- 13.8)% (p < 0.05). At 24 weeks, group 4 (rhBMP2) had the most new bone of (38.8 +/- 15.6)%, higher than (12.7 +/- 5.3)% of CPC control (p < 0.05). Micro-CT revealed nearly complete bridging of the critical-sized defects with new bone for several macroporous CPC groups, compared to much less new bone formation for CPC control. Significance. Macroporous CPC scaffolds containing porogen, fibers and microbeads with growth factors were investigated in rat cranial defects for the first time. Macroporous CPCs had new bone up to 2-fold that of traditional CPC control at 4 weeks, and 3-fold that of traditional CPC at 24 weeks, and hence may be useful for dental, craniofacial and orthopedic applications. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved
Evolution of the electronic structure with size in II-VI semiconductor nanocrystals
In order to provide a quantitatively accurate description of the band gap
variation with sizes in various II-VI semiconductor nanocrystals, we make use
of the recently reported tight-binding parametrization of the corresponding
bulk systems. Using the same tight-binding scheme and parameters, we calculate
the electronic structure of II-VI nanocrystals in real space with sizes ranging
between 5 and 80 {\AA} in diameter. A comparison with available experimental
results from the literature shows an excellent agreement over the entire range
of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.
Photonic crystal carpet: Manipulating wave fronts in the near field at 1550 nm
Ground-plane cloaks, which transform a curved mirror into a flat one, and
recently reported at wavelengths ranging from the optical to the visible
spectrum, bring the realm of optical illusion a step closer to reality.
However, all carpet-cloaking experiments have thus far been carried out in the
far-field. Here, we demonstrate numerically and experimentally that a
dielectric photonic crystal (PC) of a complex shape made of a honeycomb array
of air holes can scatter waves in the near field like a PC with a at boundary
at stop band frequencies. This mirage effect relies upon a specific arrangement
of dielectric pillars placed at the nodes of a quasi-conformal grid dressing
the PC. Our carpet is shown to work throughout the range of wavelengths 1500nm
to 1650nm within the stop band extending from 1280 to 1940 nm. The device has
been fabricated using a single- mask advanced nanoelectronics technique on
III-V semiconductors and the near field measurements have been carried out in
order to image the wave fronts's curvatures around the telecommunication
wavelength 1550 nm.Comment: 6 page
Does Pelletizing Catalysts Influence the Efficiency Number of Activity Measurements? Spectrochemical Engineering Considerations for an Accurate Operando Study
International audienc
Electron-Hole Correlations and Optical Excitonic Gaps in Quantum-Dot Quantum Wells: Tight-Binding Approach
Electron-hole correlation in quantum-dot quantum wells (QDQW's) is
investigated by incorporating Coulomb and exchange interactions into an
empirical tight-binding model. Sufficient electron and hole single-particle
states close to the band edge are included in the configuration to achieve
convergence of the first spin-singlet and triplet excitonic energies within a
few meV. Coulomb shifts of about 100 meV and exchange splittings of about 1 meV
are found for CdS/HgS/CdS QDQW's (4.7 nm CdS core diameter, 0.3 nm HgS well
width and 0.3 nm to 1.5 nm CdS clad thickness) which have been characterized
experimentally by Weller and co-workers [ D. Schooss, A. Mews, A. Eychmuller,
H. Weller, Phys. Rev. B, 49, 17072 (1994)]. The optical excitonic gaps
calculated for those QDQW's are in good agreement with the experiment.Comment: 3 figures, to appear in Phys.Rev.
Electronic structure and optical properties of ZnS/CdS nanoheterostructures
The electronic and optical properties of spherical nanoheterostructures are
studied within the semi-empirical tight-binding model including
the spin-orbit interaction. We use a symmetry-based approach previously applied
to CdSe and CdTe quantum dots. The complete one-particle spectrum is obtained
by using group-theoretical methods. The excitonic eigenstates are then deduced
in the configuration-interaction approach by fully taking into account the
Coulomb direct and exchange interactions. Here we focus on ZnS/CdS, ZnS/CdS/ZnS
and CdS/ZnS nanocrystals with particular emphasis on recently reported
experimental data. The degree of carrier localization in the CdS well layer is
analyzed as a function of its thickness. We compute the excitonic fine
structure, i.e., the relative intensities of low-energy optical transitions.
The calculated values of the absorption gap show a good agreement with the
experimental ones. Enhanced resonant photoluminescence Stokes shifts are
predicted.Comment: 6 pages, 4 Figures, revtex
Persistent DNA Damage after High Dose In Vivo Gamma Exposure of Minipig Skin
Exposure to high doses of ionizing radiation (IR) can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2) of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF) formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of <1% of keratinocytes at 28-70 days. The latter contained large RIFs that included ATM-p, indicating the accumulation of complex DNA damage. At 96 days most of the cells with RIFs had disappeared. The frequency of active-caspase-3-positive apoptotic cells was 17-fold increased 3 days after IR and remained >3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+) were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios
- …