182 research outputs found

    Long Term Precipitation Chemistry and Wet Deposition in a Remote Dry Savanna Site in Africa (Niger)

    Get PDF
    A long-term measurement of precipitation chemistry has been carried-out in a rural area of Banizoumbou, in the Sahel (Niger), representative of the african semi-arid savanna ecosystem. A total of 305 rainfall samples, representing 90% of the total annual rainfall, were collected with an automatic wet-only rain sampler from June 1994 to September 2005. Using ionic chromatography, pH major inorganic and organic ions were analyzed. Rainwater chemistry at the site is controlled by soil dust emissions associated to a strong terrigeneous contribution represented by SO42¿, Ca2+, Carbonates, K+ and Mg2+. Calcium and carbonates represent about 40% of the total ionic charge of precipitation. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) NO3¿ and NH4+, concentrations of 11.6 and 18.1 ”eq.l-1, respectively. This is thesignature of ammonia sources related to animals and NOx emissions from savannas soils rain-induced, at the beginning of the rainy season. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 ”eq.l-1 and reflects the marine signature from the monsoon humid air masses coming from the ocean. The mean pH value, calculated from the VWM of H+, is 5.64. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8 ”eq.l-1 and 5.2 ”eq.l-1 of formate and acetate were found, respectively. The analysis of monthly Black Carbon emissions and FAPAR values show that both biogenic emission from vegetation and biomass burning sources could explain the organic acidity content of the precipitation. The interannual variability of the VWM concentrations around the mean (1994¿2005) presents fluctuations between ±5% and ±30% mainly attributed to the variations of sources strength associated with rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is 60.1 mmol.m-2.yr-1 and fluctuates around ±25%. Finally, Banizoumbou measurements, are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (CÎte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loadings presents a strong negative gradient from the dry savanna to the forest (143.7, 100.2 to 86.6 ”eq.l¿1), associated with the gradient of terrigeneous compounds sources. The wet deposition fluxes present an opposite gradient, with 60.0 mmol.m-2.yr-1 in Banizoumbou, 108.6 mmol.m-2.yr¿1 in Lamto and 162.9 mmol.m-2.yr-1 in Zoétélé, controlled by the rainfall gradient along the ecosystems transect.JRC.DDG.H.3-Global environement monitorin

    Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data

    Get PDF
    We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture). Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3) and 1422 Tg CO (VGT). Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100%) and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31%) and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64–74%, 23–32% and 3–4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month) and spatial (0.5° × 0.5° cell) dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions

    Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application

    Get PDF
    We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5 degrees in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models is used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations

    Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter

    Get PDF
    Along with some research networking programmes, the European Directive 2008/50/CE requires chemical speciation of fine aerosol (PM<sub>2.5</sub>), including elemental (EC) and organic carbon (OC), at a few rural sites in European countries. Meanwhile, the thermal-optical technique is considered by the European and US networking agencies and normalisation bodies as a reference method to quantify EC–OC collected on filters. Although commonly used for many years, this technique still suffers from a lack of information on the comparability of the different analytical protocols (temperature protocols, type of optical correction) currently applied in the laboratories. To better evaluate the EC–OC data set quality and related uncertainties, the French National Reference Laboratory for Ambient Air Quality Monitoring (LCSQA) organised an EC–OC comparison exercise for French laboratories using different thermal-optical methods (five laboratories only). While there is good agreement on total carbon (TC) measurements among all participants, some differences can be observed on the EC / TC ratio, even among laboratories using the same thermal protocol. These results led to further tests on the influence of the optical correction: results obtained from different European laboratories confirmed that there were higher differences between OC<sub>TOT</sub> and OC<sub>TOR</sub> measured with NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between EC<sub>TOT</sub> / EC<sub>TOR</sub> ratios can be observed when comparing results obtained for rural and urban samples, with EC<sub>TOT</sub> being 50% lower than EC<sub>TOR</sub> at rural sites whereas it is only 20% lower at urban sites. The PM chemical composition could explain these differences but the way it influences the EC–OC measurement is not clear and needs further investigation. Meanwhile, some additional tests seem to indicate an influence of oven soiling on the EC–OC measurement data quality. This highlights the necessity to follow the laser signal decrease with time and its impact on measurements. Nevertheless, this should be confirmed by further experiments, involving more samples and various instruments, to enable statistical processing. All these results provide insights to determine the quality of EC–OC analytical methods and may contribute to the work toward establishing method standardisation

    Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Get PDF
    Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from CÎte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on the variability of particulate emissions in atmospheric systems

    Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Get PDF
    African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin) and Banizoumbou (Niger) AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable

    Cross-hemispheric transport of Central African biomass burning pollutants: implications for downwind ozone production

    Get PDF
    Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT) had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT) plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2) enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB) tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic. Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate in-situ net photochemical O3 production rates in these plumes during transport downwind of West Africa. The mid-troposphere plume spreads over altitude between 1.5 and 6 km over the Atlantic Ocean. Even though the plume was old, it was still very photochemically active (mean net O3 production rates over 10 days of 2.6 ppbv/day and up to 7 ppbv/day during the first days) above 3 km especially during the first few days of transport westward. It is also shown that the impact of high aerosol loads in the MT plume on photolysis rates serves to delay the peak in modelled O3 concentrations. These results suggest that a significant fraction of enhanced O3 in mid-troposphere over the Atlantic comes from BB sources during the summer monsoon period. According to simulated occurrence of such transport, BB may be the main source for O3 enhancement in the equatorial south Atlantic MT, at least in August 2006. The upper tropospheric plume was also still photochemically active, although mean net O3 production rates were slower (1.3 ppbv/day). The results suggest that, whilst the transport of BB pollutants to the UT is variable (as shown by the mesoscale model simulations), pollution from biomass burning can make an important contribution to additional photochemical production of O3 in addition to other important sources such as nitrogen oxides (NOx) from lightning
    • 

    corecore