248 research outputs found

    The liquid krypton calorimeter cryogenics for the NA48 experiment

    Get PDF
    The NA48 cryogenic system has to provide stable thermal conditions (120 K) in a 9000 liter liquid krypton calorimeter, and has to ensure safe and loss free storage of the liquid during idle periods. Direct cooling of the krypton by nitrogen is used in emergency cases, while an intermediate cooler, containing saturated liquid argon at around 10 bar (117 K) is used under normal operation conditions when high thermal stability is needed. The krypton pressure is, during data taking, regulated to a value of (1.05 ±\pm 0.01) bar for a period of about 8 months of continuous operation of the calorimeter

    Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy

    Get PDF
    We use polarized photocurrent spectroscopy in a nanowire device to investigate the band structure of hexagonal Wurtzite InAs. Signatures of optical transitions between four valence bands and two conduction bands are observed which are consistent with the symmetries expected from group theory. The ground state transition energy identified from photocurrent spectra is seen to be consistent with photoluminescence emitted from a cluster of nanowires from the same growth substrate. From the energies of the observed bands we determine the spin orbit and crystal field energies in Wurtzite InAs. This information is vital to the development of crystal phase engineering of this important III-V semiconductor.ER

    Impairment of germline transmission after blastocyst injection with murine embryonic stem cells cultured with mouse hepatitis virus and mouse minute virus

    Get PDF
    The aim of this study was to determine the susceptibility of murine embryonic stem (mESCs) to mouse hepatitis virus (MHV-A59) and mouse minute virus (MMVp) and the effect of these viruses on germline transmission (GLT) and the serological status of recipients and pups. When recipients received 10 blastocysts, each injected with 100 TCID50 MHV-A59, three out of five recipients and four out of 14 pups from three litters became seropositive. When blastocysts were injected with 10−5 TCID50 MMVp, all four recipients and 14 pups from four litters remained seronegative. The mESCs replicated MHV-A59 but not MMVp, MHV-A59 being cytolytic for mESCs. Exposure of mESCs to the viruses over four to five passages but not for 6 h affected GLT. Recipients were seropositive for MHV-A59 but not for MMVp when mESCs were cultured with the virus over four or five passages. The data show that GLT is affected by virus-contaminated mESCs

    Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis

    Get PDF
    Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4–5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61–71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion, macromolecule synthesis, and gametogenesis

    Dynamics of Transcription Regulation in Human Bone Marrow Myeloid Differentiation to Mature Blood Neutrophils.

    Get PDF
    Neutrophils are short-lived blood cells that play a critical role in host defense against infections. To better comprehend neutrophil functions and their regulation, we provide a complete epigenetic overview, assessing important functional features of their differentiation stages from bone marrow-residing progenitors to mature circulating cells. Integration of chromatin modifications, methylation, and transcriptome dynamics reveals an enforced regulation of differentiation, for cellular functions such as release of proteases, respiratory burst, cell cycle regulation, and apoptosis. We observe an early establishment of the cytotoxic capability, while the signaling components that activate these antimicrobial mechanisms are transcribed at later stages, outside the bone marrow, thus preventing toxic effects in the bone marrow niche. Altogether, these data reveal how the developmental dynamics of the chromatin landscape orchestrate the daily production of a large number of neutrophils required for innate host defense and provide a comprehensive overview of differentiating human neutrophils

    Expression and Localization of CLC Chloride Transport Proteins in the Avian Retina

    Get PDF
    Members of the ubiquitously expressed CLC protein family of chloride channels and transporters play important roles in regulating cellular chloride and pH. The CLCs that function as Cl−/H+ antiporters, ClCs 3–7, are essential in particular for the acidification of endosomal compartments and protein degradation. These proteins are broadly expressed in the nervous system, and mutations that disrupt their expression are responsible for several human genetic diseases. Furthermore, knock-out of ClC3 and ClC7 in the mouse result in the degeneration of the hippocampus and the retina. Despite this evidence of their importance in retinal function, the expression patterns of different CLC transporters in different retinal cell types are as yet undescribed. Previous work in our lab has shown that in chicken amacrine cells, internal Cl− can be dynamic. To determine whether CLCs have the potential to participate, we used PCR and immunohistochemical techniques to examine CLC transporter expression in the chicken retina. We observed a high level of variation in the retinal expression levels and patterns among the different CLC proteins examined. These findings, which represent the first systematic investigation of CLC transporter expression in the retina, support diverse functions for the different CLCs in this tissue

    Internet of Things for Sustainable Forestry

    Get PDF
    Forests and grasslands play an important role in water and air purification, prevention of the soil erosion, and in provision of habitat to wildlife. Internet of Things has a tremendous potential to play a vital role in the forest ecosystem management and stability. The conservation of species and habitats, timber production, prevention of forest soil degradation, forest fire prediction, mitigation, and control can be attained through forest management using Internet of Things. The use and adoption of IoT in forest ecosystem management is challenging due to many factors. Vast geographical areas and limited resources in terms of budget and equipment are some of the limiting factors. In digital forestry, IoT deployment offers effective operations, control, and forecasts for soil erosion, fires, and undesirable depositions. In this chapter, IoT sensing and communication applications are presented for digital forestry systems. Different IoT systems for digital forest monitoring applications are also discussed

    Structural Analysis of a Peptide Fragment of Transmembrane Transporter Protein Bilitranslocase

    Get PDF
    Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane
    corecore