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SUMMARY

Neutrophils are short-lived blood cells that play a
critical role in host defense against infections. To
better comprehend neutrophil functions and their
regulation, we provide a complete epigenetic over-
view, assessing important functional features of their
differentiation stages from bone marrow-residing
progenitors to mature circulating cells. Integration
of chromatin modifications, methylation, and tran-
scriptome dynamics reveals an enforced regulation
of differentiation, for cellular functions such as
release of proteases, respiratory burst, cell cycle
regulation, and apoptosis. We observe an early
establishment of the cytotoxic capability, while the
2784 Cell Reports 24, 2784–2794, September 4, 2018 ª 2018
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signaling components that activate these antimicro-
bial mechanisms are transcribed at later stages,
outside the bone marrow, thus preventing toxic ef-
fects in the bone marrow niche. Altogether, these
data reveal how the developmental dynamics of the
chromatin landscape orchestrate the daily produc-
tion of a large number of neutrophils required for
innate host defense and provide a comprehensive
overview of differentiating human neutrophils.

INTRODUCTION

Human neutrophils, with a daily production rate of �1011 cells

(Strydom and Rankin, 2013), are the most abundant type of

leukocytes and an essential element of the innate immune
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Transcriptome and Epigenome Dynamics of Neutrophil Differentiation

(A) Cumulative distribution of the average fraction of total transcription contributed by protein-coding genes when sorted from most to least expressed in each

differentiation stage.

(B) Top: bar plots reporting differentially expressed genes (posterior probability > 0.5 and absolute fold change > 2) in the comparisons P/M-MM,MM-BN, BN-SN,

and SN-PMN. Bottom: May-Gr€unwald-Giemsa staining of the isolated cells.

(C) Heatmap displaying the expression patterns of the clusters (r1–r7) identified by the K-means analysis of the genes differentially expressed in at least one

comparison.
system. Patients with either acquired or inherited defects in

neutrophil development, migration, or function show enhanced

susceptibility to infection by opportunistic pathogens (Erlacher

and Strahm, 2015; Fodil et al., 2016). Neutrophils have a variety

of effector functions, such as phagocytosis of pathogens (Nau-

seef and Borregaard, 2014), intracellular killing in phagosomes

with reactive oxygen species (ROS), and antimicrobial granule

components (Darrah and Andrade, 2013; Garcia-Romo et al.,

2011; Hakkim et al., 2010). They are produced in the bone

marrow and reach the bloodstream across five main stages of

differentiation. Myeloblasts (MBs) undergo 1 week of prolifera-

tion, followed by maturation (Bainton et al., 1971), then progres-

sively move through promyelocytes and myelocytes (P/Ms),

metamyelocytes (MMs), band neutrophils (BNs), and finally

segmented neutrophils (SNs). During this time they produce

different granules filled with antimicrobial compounds and

develop the abilities of respiratory burst and chemotaxis. SNs

represent a reserve pool fromwhich cells are constantly released

into the peripheral bloodstream, as non-dividing polymorphonu-

clear neutrophils (PMNs). The differentiation process exhibits a

precise and tightly defined transcriptional program (Theilgaard-

Mönch et al., 2005). In this study, we used total RNA sequencing

(RNA-seq) to characterize and compare gene expression pro-

files of the various differentiation stages. Histone modifications,

chromatin immunoprecipitation sequencing (ChIP-seq), and

whole-genome bisulfite sequencing (WGBS) have been used to

describe the epigenetic landscapes underlying these coordi-

nated changes. For each stage we defined DNAmethylation pat-

terns and characterized four active histone marks—H3 lysine-4

trimethylation (H3K4me3), H3 lysine-27 acetylation (H3K27ac),

H3 lysine-4 monomethylation (H3K4me1), H3 lysine-36 trimethy-

lation (H3K36me3)—and two repressive marks—histone H3

lysine-9 trimethylation (H3K9me3) and histone H3 lysine-27

trimethylation (H3K27me3). The integration of these analyses

reveals a high degree of coordination between the dynamics of

histone modifications and transcriptional changes. The activa-

tion of PMNs triggers the host defense. This process is accom-
plished through some functional key responses as respiratory

burst, cell migration, and degranulation. Integrating our func-

tional assays with the epigenomic analysis gave us the opportu-

nity to further characterize the timing of these important

processes.

RESULTS

Transcriptional Changes in Neutrophil Development
To better understand neutrophil functions and their regulation,

we analyzed the transcriptomes of circulating neutrophils and

their progenitor populations (Figure S1A). Our analysis revealed

quantitative and qualitative differences in expression among

PMNs, SNs, and the other differentiation stages. We used cumu-

lative distribution of expression to explore the complexity of the

transcriptome (Melé et al., 2015) and found that in PMNs and

SNs, the genes with higher expression give a smaller contribu-

tion to the global transcriptional output than in other stages

(Figure 1A). To deepen the transcriptome comparisons, we per-

formed differential gene expression analysis between subse-

quent stages and between the initial and the final stage (Fig-

ure 1B; Table S1). Downregulated genes in the P/M-PMNs

comparison enriched Gene Ontology (GO) categories related

to cell functions, such as metabolism, translation, cell cycle,

DNA replication, mitochondria, and cell divisions (Figures S1B

and S1C). On the other hand, the upregulated genes enriched

fewer categories, related mainly to immune system functions

and vesicle transport processes (Figures S1B and S1C). The

analysis of differentially expressed transcripts across all stages

found 108 genes with significant changes in transcription start-

ing site (TSS) use (Table S1). Only for 12 genes did this lead to

changes in the open reading frame (Table S1). Cluster analysis

and gap statistic (Tibshirani et al., 2001) summarized the differ-

entially expressed genes in at least one of the five comparisons

(P/M-MM, MM-BN, BN-SN, SN-PMN, or P/M-PMN) in seven

main clusters (r1–r7; Figure 1C; Table S1). Genes in clusters

r1 and r2 showed an increase in expression toward the latter
Cell Reports 24, 2784–2794, September 4, 2018 2785



stages of differentiation and enriched GO terms related to

immune system and signal transduction (Table S1). Genes in

clusters r5, r6, and r7 displayed a decreasing expression trend

with differentiation progression and enriched GO terms related

to translation, mitochondria, and cell cycle (Table S1). The

remaining two clusters (r3 and r4) were made by genes whose

expression increased during the intermediate stages of differen-

tiation and then decreased at the PMN stage. These enriched

GO terms related to vesicle transport and signal transduction

(Table S1).

Epigenetic Dynamics in Neutrophil Development
In order to define the chromatin dynamics underlying the

changes in gene expression during neutrophil differentiation,

we determined the epigenetic landscape in the five differentia-

tion stages and integrated them with the results of the transcrip-

tome characterization. Principal-component analysis (PCA) of

the four active histone modifications (H3K4me3, H3K27ac,

H3K4me1, and H3K36me3) revealed a good separation among

the five neutrophil development stages (Figure S2A). In contrast,

PCA for the two repressivemarks (H3K9me3 and H3K27me3) re-

vealed donor-specific, rather than stage-specific, clusters (Fig-

ure S2A). Moreover, PCA analysis of DNA methylation profiles

did not reveal differences among the five differentiation stages

(Figure S2B), and only a few differentially methylated regions

(DMRs) were identified between subsequent stages of differen-

tiation (Figure S2C; Table S2). Altogether, histone mark and

DNA methylation results indicate a modest contribution of

repressive epigenetic mechanisms in the described phases of

neutrophil differentiation.

The six different histone modifications were also used to

perform a genome segmentation analysis (Ernst and Kellis,

2012), which indicated 12 representative states (Figure S3A).

These were collapsed into a smaller set for ease of interpretation

(Carrillo-de-Santa-Pau et al., 2017) to obtain four main cate-

gories: active, enhancer, low signal, and repressed (Figure S3A).

We then focused on the changes of chromatin states, identifying

between 15,685 and 27,604 at each consecutive differentiation

transition (Figure 2A; Table S3). In agreement with the differential

gene expression analysis results, the consecutive transitions

with most changes were P/M to MM and SN to PMN. Upregu-

lated genes were enriched in changes toward active states

(i.e., from low signal/repressed to active/enhancer), while down-

regulated genes were enriched in transitions toward inactive

states (i.e., from active/enhancer to low signal/repressed) in

the majority of differentiation stages (Figure S3B). H3K27ac,

strongly associated with active and enhancer states, is among

the most highly informative marks about gene regulation (Karli�c

et al., 2010; Rada-Iglesias et al., 2011). For this reason, we

decided to focus our attention on the 9,100 genomic regions

characterized by changes in H3K27ac levels during differentia-

tion (see Experimental Procedures). Using co-occupancy with

H3K4me3 to identify promoter regions and co-occupancy with

H3K4me1 to identify enhancers, in addition to a supervised clus-

ter of the H3K27ac log ratio RPKM (reads per kilobase of tran-

script per million mapped reads), we divided these regions in

two categories each made of eight subgroups (Figure 2B; Table

S4). The intersection of these regions with the chromatin states
2786 Cell Reports 24, 2784–2794, September 4, 2018
revealed an overlap with active (promoter) regions in the

H3K4me3-enriched clusters and an overlap with enhancers in

the H3K4me1-enriched clusters (Figure S3C), corroborating

our partitioning. We refer to the clusters as promoter (p1–p8)

and enhancer (e1–e8). In both promoter and enhancer clusters

about two-thirds of dynamic regions displayed an increase in

H3K27ac (i.e., increase in activity), while about one-third dis-

played a reduction in H3K27ac (i.e., reduction in activity). The

contingency tables made by the intersection of the genes in

the RNA-seq clusters gave significant Pearson’s chi-square sta-

tistics for both acetylation clusters (enhancer chi-square = 513,

p = 0.0005; promoter chi-square = 1,364, p = 0.0005). We tested

the association of each gene expression cluster with each dy-

namic acetylation cluster (Figures 2C and 2D). Interestingly we

found that expression clusters r1 and r2, containing genes with

increased expression, were significantly associated with pro-

moter clusters p1 and p2 and enhancer clusters e1 and e2.

Expression clusters r6 and r7, formed by genes with decreased

expression, were significantly associated with promoter clusters

p5 and p6 and enhancer clusters e5 and e6, all characterized by

reduced histone acetylation levels. The expression cluster r4

included genes with an increased expression in the PM-to-MM

transition, and the same trend was observed in the associated

acetylation clusters e4 and p4.

Dynamically acetylated enhancers of the same cluster had a

genomic distance closer than expected by chance (permutation

test Z = 21). This observation prompted us to investigate the

presence of super-enhancers (SEs), regulatory elements made

by clusters of enhancer that specify cell identity (Whyte et al.,

2013; Witte et al., 2015). We made use of the established

ROSE algorithm to identify 629 SEs, which could be clustered

in three main groups (Figure 3A; Table S4). SE cluster 1 (SE1)

was made by elements more acetylated in the P/M state,

showing a decreasing trend of acetylation in the subsequent

stages of differentiation; SE cluster 2 (SE2) had an opposite

trend, with acetylation increasing in the first stages and then

decreasing at the SN-PMN transition. Finally, SE cluster

3 (SE3) contained SEs activated at the end of differentiation pro-

cess. Genes controlled by SEs belonging to cluster 3 were the

only ones showing an enrichment for functional categories, all

of them related to PMN’s activation (Figures 3B and 3C).

Transcription Factors and Release from Bone Marrow
Transcription factors (TFs) bind regulatory elements (promoters

and enhancers) and enforce transcriptional programs (Lambert

et al., 2018; White et al., 2013). To identify the TFs that have an

important role in granulopoiesis, we searched for TF family

consensus binding sites, enriched in regions with increased

acetylation (clusters p1–p4 and e1–e4) compared with regions

with decreased acetylation (clusters p5–p8 and e5–e8) and

vice versa. We found enrichments for basic leucine zippers

(bZIP), SOX, zinc fingers (ZF), nuclear receptors (NR), basic

helix-loop-helices (bHLH), NF-kB family members (REL), home-

odomains, and ETS families, with stronger signal in regions with

increased acetylation (Figure 4A). Regions with decreased

H3K27ac signal showed enrichment for MYB- and GATA-bind-

ing motifs. We integrated these results with gene expression

analysis results and identified for each enriched motif TF genes
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Figure 2. H3K27 Acetylation Drives Consecutive Neutrophil Differentiation Stages

(A) Sankey diagrams of consistent chromatin states for each of the neutrophil differentiation transitions. Different chromatin states are represented with specific

color codes: green indicates active regions, purple enhancers, amber low signal regions, and dark blue heterochromatic regions. The red connecting lines

indicate transitions toward inactive states (low signal and repressed); the light blue lines indicate transitions toward active states (active and enhancer).

(B) Left: stacking heatmaps of H3K27ac (yellow), H3K4me3 (red), and H3K4me1 (orange) ChIP-seq of promoters and enhancers (±5 kb) with dynamic acetylation

during different stages of neutrophil differentiation. Right: differentially acetylated promoter and enhancer during two consecutive neutrophil progenitor stage

transitions are clustered as acetylation clusters for promoters p1–p8 and for enhancers e1–e8, respectively. Acetylation gains are presented in red and acetylation

losses in green.

(C andD) Heatmaps representing the association between the expression clusters identified in Figure 1C and the promoter (C) and enhancer (D) clusters identified

in Figure 2B. Only significant corrected p values (<0.05) are reported in the figures.
differentially expressed in at least one of the comparisons

between differentiation stages (Figure 4B). The majority of these

TFs (81 of 95) were differentially expressed in only one of the four

comparisons. Twelve of the remaining 14 genes, differentially

expressed at multiple transitions, were always either up- or

downregulated. Only 2 genes, differentially expressed atmultiple

transitions, had a trend inversion: TGIF2 was downregulated in

the P/M-MM transition and upregulated in the BN-SN transition,

and ETS1 was upregulated in the P/M-MM transition and down-

regulated in the SN-PMN transition.

The P/M-to-MM transition included the majority (65 of 95) of

differentially expressed TFs, followed by the bone marrow-to-

blood transition (SN to PMN) with 20 differentially expressed

TFs (Figure 4B). Interestingly 19 of them were downregulated,

and NKX3-1, the only upregulated one, had a reported transcrip-
tional repressor activity (Simmons and Horowitz, 2006). The TF

families MYB, GATA, and E2F were exclusively overrepresented

in enhancers and promoters with decreased acetylation, reflect-

ing their role in other lineages and cell cycle progression

(Bart�unek et al., 2003; Ghazaryan et al., 2014). Accordingly,

differentially expressed genes from these families were all down-

regulated (Figure 4B).

Acquisition and Control of Cytotoxic Capabilities
Cell proliferation is halted during neutrophil differentiation; our

transcriptome and epigenome data indicated that this occurs

in the bone marrow, as previously reported (Klausen et al.,

2004; Theilgaard-Mönch et al., 2005). Flow cytometry quantifica-

tion of Ki67, a marker for proliferation (Gerdes, 1990), showed

that the majority of the signal drops in the early stages of myeloid
Cell Reports 24, 2784–2794, September 4, 2018 2787
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differentiation (P/M-to-MM transition) and a complete loss is

observed at the SN stage (Figure 5A). Neutrophils are phago-

cytes, capable of ingesting and killing microorganisms by the

release of ROS, highly toxic chemical species, potentially harm-

ful for the bonemarrow niche. Themulticomponent nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase complex,

consists of a membrane-associated heterodimer cytochrome

b558 and a trio of cytosolic proteins (Nauseef and Borregaard,

2014). This complex confers the unique neutrophils’ ability to

generate a family of reactive oxidizing agents (Weiss, 1989),

and we focused on it to characterize the exact dynamic of this

defense mechanism formation. Upon activation, the intact

NADPH oxidase generates superoxide, the precursor to

hydrogen peroxide and other ROS with microbial activity, at

the plasma membrane and at the membranes of phagosomes

where particles are ingested (Figure 5B). The oxidase complex

subunits showed different expression dynamics during differen-

tiation (Figure 5C). CYBA (p22-phox), NCF4 (p40-phox), RAC2,

and RAC1 had stable expression levels, whereas CYBB (gp91-

phox) was maximally expressed between the MM and BN

stages, and the cytoplasmic components NCF1 (p47-phox)

and NCF2 (p67-phox) were upregulated in the P/M-to-MM tran-

sition and then remained stable in the subsequent stages. In

order to verify when the complex is functional, we used an

Amplex Red hydrogen peroxide assay to detect the NADPH

oxidase activity. Stimulation of PAF-primed neutrophils with

the bacterial-derived tripeptide formyl-MLP (PAF/fMLP) (Drew-

niak et al., 2013; Kuijpers et al., 2005) was used to ensure the

maximal stimulation via the natural receptor. At P/M the NAPDH

oxidase activity was very low. It became readily detectable at the

next stage of differentiation (MM), as shown by the activation

with the cell-permeable phorbol ester PMA, which directly acti-

vates intracellular protein kinase C (Moore et al., 1991). In

contrast, stimulation via the cell-impermeable PAF/fMLP re-

vealed a delay in ROS formation, detectable from the BN stage

onward (Figure 5D). In agreement with the increase in transcrip-

tion level and functional activity of NADPH oxidase, we found

that cytochrome b558, the heterodimer of gp91-phox and p22-
2788 Cell Reports 24, 2784–2794, September 4, 2018
phox, and fMLP-receptor FPR1 levels

(both determined by flow cytometry)

increased during differentiation (Figures

S4A and S4B). Additionally we also noted

that CXCR1, CXCR2, CXCR4, FPR1,

FPR2, PTAFR, and C5AR1, activating G

protein-coupled receptors for the major
chemotactic factors in neutrophils, follow the same expression

trend (Figure S4C), and are all in the expression cluster r1.

Transcriptional and Epigenetic Control of Granule
Proteins
Another main function of the neutrophils is the degranulation

consisting in the release of an assortment of proteins, stored in

different granules. These granules are distinguishable by their

contents: azurophilic granules (AG), specific granules (SG),

gelatinase-containing granules (GG), ficolin-containing granules

(FG), and secretory vesicles (SV) (Rørvig et al., 2013). To gain

insight in the control of the biogenesis of these granules during

differentiation, we examined available proteomic data (Rørvig

et al., 2013) and selected the proteins whose granule assign-

ments were supported by other existing literature (Table S6)

and the granule proteins assigned to the cell membrane (CM)

fraction. We found that genes encoding proteins belonging to

various granules display different expression trends (Figure 6A),

and in agreement with this, they showed a tendency to belong to

different RNA-seq clusters (chi-square = 91.8062, p < 0.0005;

Figure S5A). AG proteins were associated with clusters r6 and

r7 (Fisher’s exact test corrected p < 0.05), while CM proteins

were associated with cluster r1 (Fisher’s exact test corrected

p < 0.005) and SG proteins with cluster r4 (Fisher’s exact test

corrected p = 3.1 3 10�6).

To determine the time of appearance of AG’s proteolytic capa-

bility, we measured their combined serine protease activity, in

sorted neutrophil progenitors, upon CytoB/fMLP stimulation or

Triton X-100 lysis. The results showed that although AG proteins

have already been produced and stored at P/M stage, the prote-

ase release machinery is not in place before the BN stage. P/M

cells were found to harbor the highest concentration of proteo-

lytic activity, which was then diluted over to the MM daughter

cells and remained stable in activity thereafter (Figure 6B). Genes

of different granule proteins, similarly to what observed for gene

expression, displayed different H3K27ac trends (Figure S5B). In

agreement with this, genes encoding soluble AG proteins, such

as AZU1, PRTN3, and ELANE, had a high level of the H3K27ac in
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Figure 4. Transcription Factors with Enriched Binding Sites in Dynamic Acetylated Regions

(A) Transcription factor (TF) family motif enrichment in the dynamic acetylated regions in Figure 2B.

(B) RNA expression in log2(FPKM+1) of the TF family members in (A) differentially expressed in at least one of the comparison between differentiation stages; the

asterisk denotes the transitions where the expression is significantly different.
the P/M stage and reduced in the MM stage (Figures 6C and

S5B) and were enriched in clusters p5, p6, and e5 (Fisher’s

test corrected p values: for p5, p = 6.64 3 10�3; for p6,

p = 6.64 3 10�3; and for e5, p = 3.65 3 10�2). In contrast, SG-

associated genes, such as LTF, with increased acetylation in

the P/M-to-MM transition, were enriched mainly in clusters p4

and e4 (Fisher’s test corrected p values: for p4, p = 1.7 3

10�3; and for e4, p = 2.88 3 10�2) (Figures 6C and S5B). The

SV-associated genes as MMP25 displayed increased acetyla-

tion at the final stages of differentiation (Figures 6C and S5B).
DISCUSSION

Our study dissects human neutrophil differentiation through the

analysis and integration of transcriptomes, epigenomes, and

functional assays of five consecutive stages of maturation.

In the transcriptome of a cell, a relative small number of genes

contribute to a large fraction of the expression (Melé et al., 2015).

Interestingly, we found this trend to be less pronounced in the

two latest stages of neutrophil maturation, SN and PMN, indi-

cating a change in transcriptome features at the final stages of

the differentiation.
The P/M-to-MN and SN-to-PMN were the consecutive transi-

tions with the largest numbers of differentially expressed genes

and changes in chromatin states. These transcriptomic and epi-

genomic differences reflect the important differences between

these stages. Indeed, the P/M-to-MN transition denotes a pas-

sage from cells capable of dividing to cells with indented nuclei

and unable to divide (Wahed and Dasgupta, 2015). Similarly,

the SN-to-PMN transition denotes the passage from bone

marrow to the bloodstream.

Different stages of maturation do not display relevant differ-

ences in DNA methylation. This suggests that the unique pat-

terns of DNA methylation found in neutrophils (Schuyler et al.,

2016) are established at earlier stages of differentiation, in agree-

ment with a previous study reporting that themajority of changes

in DNA methylation occur between the oligopotent common

myeloid progenitor and the bipotent granulocyte monocyte pro-

genitor, with only minor changes occurring in the P/M-to-PMN

transition (Rönnerblad et al., 2014). Our study extends this result,

with more differentiation steps during maturation of the granulo-

cyte progenitors, thus providing a more detailed description of

the dynamics of transcriptional enhancers’ commitment. More-

over, the use of WGBS allowed a 60-fold increase of the number

of CpG analyzed residues.
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Figure 5. Cell Cycle and NADPH Oxidase Regulation in Neutrophil Differentiation

(A) Flowcytometry analysis of Ki67expression in bonemarrowneutrophil progenitor fractions normalized to isotopecontrol in gray for the threebiological replicates.

(B) Schematic of the assembly of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme complex on the phagosomal or plasmamembrane

upon neutrophil activation.

(C) Heatmap representing the expression in log2(FPKM+1) of NADPH complex subunits during neutrophil differentiation.

(D) Respiratory burst in sorted neutrophil progenitors from bone marrow and mature PMN upon stimulation with PMA and PAF/fMLP. Results are expressed as

maximal rates in nmol H2O2/min $ 106 PMNs and as mean ± SEM from the three biological replicates. t test corrected p values of the consecutive stages are

indicated in the figure: *p < 0.1 and **p < 0.01. ns, nonsignificant. The t test corrected p values of all comparisons are reported in Table S5.
In line with the DNAmethylation results the two repressive his-

tone marks analyzed cannot be used to discriminate among

neutrophil differentiation stages. Previous studies demonstrated

that repressive H3K9me3 and H3K27me3 marks and DNA

methylation have a crucial role in cell commitment (Bock et al.,

2012; Hawkins et al., 2010), and our results suggest that in neu-

trophils, they do not play any further roles once lineage commit-

ment is achieved.

We focused our attention on promoter and enhancer regions

subject to dynamic acetylation across differentiation. These re-

gions, subdivided in clusters, showed significant overlaps of

target genes with the clusters of differentially expressed genes,

highlighting a strong correlation between epigenomic and tran-

scriptomic profiles at the various differentiation stages. The

study of dynamically acetylated regions led us to identify SEs

differently modulated across differentiation; a consistent group

of these is activated at the end of differentiation and have as po-

tential targets the genes involved in immunological response and

neutrophil activation.

To further characterize the dynamically acetylated regions, we

looked for enriched TF binding sites and integrated them with

the differential expression results. This approach aimed to high-

light TFs playing a potential role in the differentiation process.

CEBPA is a TF of the bZIP family with amajor role in the neutrophil

differentiation program, and it is known to be crucial for the devel-

opmentofacutemyeloid leukemia (AvellinoandDelwel, 2017).Our

results show that CEBPA is highly expressed in the bone marrow

and then significantly downregulated in the SN-to-PMN transition.

CEBPE, another member of the bZIP family, is also highly
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expressed in the bone marrow and is downregulated in the SN-

to-PMN transition but also in the preceding transition, BN to SN.

Interestingly CEBPEmodulates someof the lactoferrin-containing

SG genes (Khanna-Gupta et al., 2007) and regulates the expres-

sionofGGandFGgranule genes (Gombart etal., 2001), bothchar-

acterized by a decreasing trend of expression at the PMN stage.

The transcriptome and epigenome characterizations depicted

a precise differentiation program that, in agreement with previous

findings (Theilgaard-Mönch et al., 2005), progressively activates

immune functionalities, turning off essential cell processes. The

study of five differentiation stages gave us the opportunity to

detect with better resolution where the cell cycle inactivation

takes place. We have shown that the P/M stage is the most pro-

liferative, with Ki67 signal dimming in the following MM and BN

stages and completely disappearing in the SN stage. These

data, alongside with the expression of key cell cycle regulators,

indicate that the cell cycle is arrested after the P/M stage.

Theantimicrobial activity of neutrophils isachieved throughROS

production by the NADPH oxidase enzyme complex. We showed

that this enzyme complex activity reaches its peak only at the end

of differentiation, although its expression is already detectable at

the MM stage. The observed difference in ROS production during

differentiation between PMA and PAF/fMLP kinetics highlights

that G protein-coupled receptor and its signaling machinery are

required to trigger the process. Indeed, we showed that when

the surface expression of fMLP receptor FPR1 is low, at early

stages of development, the response to PAF/fMLP is impaired.

Along the same line, we noticed that genes encoding for the

proteins contained in the various granules displayed different
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Figure 6. Epigenetics and Transcriptomics

of Granule Proteins

(A) Granule gene expression across differentiation.

Upper and lower boxplot margins indicate first and

third quartiles. LOESS fitting of the data with

relative confidence interval is represented by a

colored line with a shadow area.

(B) Proteolytic activity of the different differentia-

tion stages measured by DQ-BSA cleavage. Triton

X-100 releases total proteolytic activity stored in

the cell by lysis, while proteolytic activity by CytoB/

fMLP is a receptor-mediated release of proteases.

Results are shown as the maximal slopes in RFU/

min and expressed as mean ± SEM from the three

biological replicates. t test corrected p values of

the consecutive stages are indicated in the figure:

*p < 0.1 and **p < 0.01. ns, nonsignificant. The

t test corrected p values of all comparisons are

reported in Table S5.

(C)Representative viewsofepigeneticmodifications

dynamics at five loci encoding for granule proteins.
transcriptional and epigenetic dynamics. Indeed, the proteases

were released by cellular activation only at the mature stage,

because the signaling cascade and surface expression of acti-

vating GPCR receptors were not present at earlier stages.

The results presented in this study shed light on the neutrophil

differentiation processes and represent a useful resource for

future studies on as yet uncharacterized primary immune disor-

ders or neutrophil-related disorders such as congenital neutro-

penia syndromes, Chédiak-Higashi syndrome, and lazy leuko-

cyte syndrome (Dinauer, 2014; Nunoi et al., 1999).
EXPERIMENTAL PROCEDURES

Study Design

Bone marrow neutrophils were collected from three different healthy donors,

and mature neutrophils were collected from other three other different healthy

donors. ChiP-seq, RNA-seq, and WGBS experiments were done on samples

from the same donors.

Cell Isolation and Library Preparation

Thestudywasapprovedby the local ethics committeeofSanquinBloodSupply

Organization and the AcademicMedical Center (Amsterdam, theNetherlands).
Cell Report
PMNs were enriched by gradient centrifugation

and purified by negative selection with EasySep

Human Neutrophil Enrichment Kit. Bone marrow

neutrophil progenitors were purified by fluores-

cence-activated cell sorting (FACS) with CD11b

and CD16 (see Supplemental Experimental

Procedures for further details). ChIP-seq and total

RNA-seq libraries were prepared according to

the BLUEPRINT protocols (http://www.blueprint-

epigenome.eu).

ChIP-Seq Analysis and Genome

Segmentation

Sequenced reads were mapped against the

GRCh38 genome assembly with BWA (Li and

Durbin, 2009). ChromHMM software (version

1.10) (Ernst and Kellis, 2012) was then used to

segment the genome in 200 bp intervals and
assign epigenetic states. Chromatin states consistently identified in all three

replicates were represented with a Sankey diagram at each stage of devel-

opment using the ‘‘makeRiver’’ and ‘‘riverplot’’ functions included in the riv-

erplot R package version 0.5.

RNA-Seq Analysis

Trim Galore (version 0.3.7) (http://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/) with parameters ‘‘-q 15 -s 3 –length 30 -e 0.05’’

was used to trim PCR and sequencing adapters. Trimmed reads were

aligned to the Ensembl version 80 (Cunningham et al., 2015) human tran-

scriptome with Bowtie 1.0.1 (Langmead et al., 2009) using the parameters

‘‘-a –best –strata -S -m 100 -X 500 –chunkmbs 256 –nofw –fr.’’ MMSEQ

(version 1.0.8a) (Turro et al., 2014; Turro et al., 2011) was used with default

parameters to quantify gene expression. Genes and transcripts with poste-

rior probability > 0.5 (calculated by MMDiff), absolute fold change > 2, and

FPKM (fragments per kilobase of transcript per million mapped reads) > 1

in at least one of the two compared cell types were considered differentially

expressed. Differentially expressed genes in at least one of the comparisons

P/M-MM, MM-BN, BN-SN, SN-PMN, and P/M-PMN (Figure S1) were

clustered using the ‘‘kmeans’’ (Hartigan and Wong, 1979) clustering

R function. Gene expression FPKMs were log2-transformed, and for

each gene the Z score was calculated. We set the number of centers

to seven according to the results of the gap statistic (Tibshirani et al.,

2001) by using the ‘‘clusGap’’ function of the cluster R package.
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SE Identification

SEs in each sample were predicted by the ROSE algorithm (Whyte et al.,

2013) using H3K27ac as the surrogate mark. Briefly, all H3K27ac peaks

within ±2.0 kb around TSSs were first excluded. The remaining peaks closer

than default distance of 12.5 kb were stitched together and subsequently

ranked by normalized H3K27ac level corrected by input background. Finally,

SEs were separated from typical enhancers on the basis of the inflection point

of H3K27ac signal curve.

Functional Enrichment Analysis

Functional enrichment analysis was done by using FIDEA (D’Andrea et al.,

2013) with default settings.

Promoter/Enhancer/SE Gene Assignment

For each transcript annotated in Ensembl version 80 (Cunninghamet al., 2015),

we defined a promoter as the 2,000 bp (±1,000 bp) around its TSS. All the re-

gions defined as promoter by the genome segmentation analysis and the

H3K27ac dynamic analysis were assigned to the genes of the overlapping pro-

moters. All the regions defined as enhancer by segmentation analysis and the

H3K27ac analysis were assigned to the genewith the closest promoter (distant

less than 10,000 bp) and to genes with promoters overlapping their interacting

regions (CHiCAGO scoreR 5 in neutrophils) derived from the study of Javierre

et al. (2016). The ‘‘findOverlaps’’ and ‘‘distanceToNearest’’ functions of the

GenomicRanges (Lawrence et al., 2013) R package were used to make region

comparisons.

Motif analysis was performed with the HOMER (Heinz et al., 2010) program.

WGBS was carried out to minimum genome coverage of 303 with estab-

lished protocols (Kulis et al., 2012).

Differential methylation was estimated for (1) individual CpG sites in pairwise

comparisons by using methyl_diff (Raineri et al., 2014) and across regions in

group-wise comparison by using replicates with metilene (J€uhling et al., 2016).

Association between Acetylation and Expression Clusters

We built a contingency table with the number of genes for each acetylation

cluster (rows) and gene expression cluster (columns). The Pearson’s chi-

square test was used to verify the non-independence of the two categorical

variables. The significance of the association of each gene expression cluster

with each dynamic acetylation cluster was tested by a hyper-geometric test,

and the derived p values were corrected using the Benjamini-Hochberg

method (Hochberg and Benjamini, 1990).

NADPH-oxidase activity was assessed as the release of hydrogen peroxide

determinedwith anAmplex Red kit (Drewniak et al., 2013; Kuijpers et al., 2005).

Protease release after degranulation was measured with DQ-green BSA

(see Supplemental Experimental Procedures for further details).

DATA AND SOFTWARE AVAILABILITY

The web site https://blueprint.haem.cam.ac.uk/neutrodiff collects the

analyzed data presented in this article. All the genome-wide data generated

in this study, as well as the sequencing details, can be accessed via http://

dcc.blueprint-epigenome.eu/.
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five figures, and six tables and can be found with this article online at
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