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ABSTRACT:  

We use polarized photocurrent spectroscopy in a nanowire device to investigate the band 

structure of hexagonal Wurtzite InAs.   Signatures of optical transitions between four valence 

bands and two conduction bands are observed which are consistent with the symmetries 

expected from group theory.  The ground state transition energy identified from photocurrent 

spectra is seen to be consistent with photoluminescence emitted from a cluster of nanowires 

from the same growth substrate.  From the energies of the observed bands we determine the 

spin orbit and crystal field energies in Wurtzite InAs.  This information is vital to the development 

of crystal phase engineering of this important III-V semiconductor. 

Keywords: Nanowires, Wurtzite InAs, Photocurrent Measurement, Optical Selection Rules, 

Energy Band Structure. 
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1. Introduction 

III-V semiconductor nanowires (NWs) are quasi-one-dimensional materials which show great 

promise as a nanoscale platform for efficient and high-speed electronic devices, nanosensors and 

photovoltaics[1,2].  Among the III-V NWs, InAs is of particular interest because it exhibits a high 

electron mobility, a low effective electron mass, a large spin orbit energy and a small energy band 

gap. The spin-orbit energy is nearly as large as the band gap energy resulting in strong 

momentum-spin coupling which has been utilized in the search for Marjarona fermions[3].  Like 

many III-V NWs, InAs occurs in both the usual Zincblende (ZB) cubic phase, but also hexagonal 

Wurtzite (WZ). The hexagonal Wurtzite crystal structure has a lower symmetry than the cubic 

Zincblende structure which has a large impact on both the band structure and selection rules for 

optical transitions.  The resulting differences in the band structure have been extensively 

explored for both InP [4,5,6,7] and GaAs [8,9] NWs.  This detailed understanding has resulted in 

the rapid development of ZB/WZ nanowire axial and radial heterostructures in these materials 

to control the thermal conductivity [10], g-factor and diamagnetic coefficients [11,12,13], 

enhanced control of emission quantum efficiencies and detector sensitivities [14,15,16,17,18]. 

There is also intense interest in developing hexagonal Si, Ge and SiGe alloys as direct-gap 

materials forming the basis for silicon-based optoelectronics [19,20,21] . 

Much less is known about Wurtzite InAs. Experimental measurements of the WZ InAs 

fundamental gap range from 0.43 eV to 0.54 eV [22, 23, 24,25] and theoretical calculations of the 

gap range from 0.46 to 0.481 eV [26,27,28,29,30].  There are no direct measures of the valence 

and conduction band structure, but a number of theoretical calculations exist [26,27,28 ,29 ,30].  
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In this letter, we use polarized photocurrent spectroscopy in a WZ NW device to determine its 

band structure over a wide range of energies from 0.3 to 1.2 eV.   

 

2. Material and Methods 

Wurtzite InAs nanowires were fabricated on a [111]-oriented InAs substrate using the 

metal-catalyzed MOCVD (metal-organic chemical vapor deposition) growth method with 50 nm 

gold nanoparticles.  A substrate temperature of 500°C and an arsine/trimethylindium ratio of 2.9 

were used to achieve WZ crystal growth [31]. Fig. 1 (a) and (b) show a SEM image of the growth 

substrate and two plan view HRTEM images of a typical nanowire demonstrating the single phase 

WZ nature of the nanowires. The NWs were removed mechanically from the growth substrate 

into a methanol solution and dispersed on a p-doped silicon substrate with a 300 µm SiO2 layer 

on the surface. The dispersed wires were usually small (< 5) bundles of wires that formed through 

van der Waals forces.  A well-separated bundle of wires was identified using optical microscopy 

for device fabrication. To fabricate the device, two 20 nm Titanium and 300 nm Aluminum 

contacts were deposited on either end of the wire using photolithography, metal deposition and 

liftoff.  After confirmation that the contacts were conductive using a probe station, the nanowire 

device was placed into a gold-plated chip carrier which was mounted onto the cold finger of an 

optical cryostat for low temperature measurements.   

Figure 2 shows a typical I-V measurement on a 50 nm nanowire device at room 

temperature, in the dark and under white light illumination. From this measurement, we 

estimate the resistivity of the nanowire to be 0.9 Ω.mm. Assuming an electron mobility of 210 

cm2.V-1.s-1 (measured in similarly synthesized  samples [32]), one can estimate that the carrier 
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density in the nanowire to be  n∼3x1017 cm-3 which is also consistent with Ref. [33].  Photocurrent 

spectra were obtained by fixing the current in the device and measuring the change in the bias 

voltage as the laser is tuned over a wavelength range.  The laser is mechanically chopped and the 

change in the bias voltage is measured using a lock-in amplifier.   

3. Background: 

For ZB NWs, optical transitions which promote electrons from the valence bands to the 

conduction bands are allowed for any polarization of light.  The selection rules for optical 

transitions between the various valence bands and conduction bands in WZ NWs are more 

complicated.  WZ InAs belongs to the C6v point-group symmetry (cubic Zincblende InAs has Td 

symmetry). The valence bands at the center of the Brillouin zone can be ordered from highest 

energy to lowest energy as first (A), second (B), third (C), and fourth (D) valence bands with Γ9 , 

Γ7  , Γ7 , and Γ9  symmetries, respectively (see Fig. 1).  Similarly, the lowest lying conduction band 

(CB1) has Γ7  symmetry, and a second conduction band (CB2) at higher energies with Γ8 symmetry 

which results from zone folding of the L-valley in the cubic Zincblende structure to the center of 

the Brillouin zone (k = 0) in the Wurtzite phase [26]. 

To determine the optical selection rules for the C6v symmetry group, the light polarized 

perpendicular (E⊥c) and parallel (EIIc) to the long axis of the nanowire (the Wurtzite c-axis) are 

associated with Γ5 and Γ1 symmetries, respectively34. An optical transition is allowed for a 

particular polarization if the product of the initial and final state symmetries contains the 

symmetry associated with a particular polarization.  In equation (1) below, the various band 

symmetries are multiplied, and the results tabulated. 
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 Γ9(A,D) x Γ7(CB1) = Γ5(E⊥c) + Γ6 

Γ7(B,C) x Γ7(CB1) = Γ1(EIIc) + Γ6+Γ5(E⊥c) 

Γ9(A,D) x Γ8(CB2) = Γ5(E⊥c) + Γ6 

Γ7(B,C) x Γ8(CB2) = Γ3+Γ4+Γ6 

 

( 1) 

 

 

From equation (1), we see that for hexagonal Wurtzite InAs, optical transitions from the A or D 

valence bands to CB1 are only allowed for perpendicular polarization, while optical transitions 

from the B or C valence bands to CB1 are allowed for both polarizations. Perpendicularly polarized 

light can excite carriers from the A or D valence bands to the second conduction band, however, 

excitations from either B or C valence bands to CB2 are not allowed at all. Figure 1 provides a 

summary of all the allowed optical transitions in the C6v symmetry group. 

4. Experiment and Results: 

In this letter we explore the energy band structure and optical selection rules in a WZ InAs 

NW device by using polarized photocurrent (PC) spectroscopy in the infrared energy range 0.3-

1.2 eV (or 4000 to 1000 nm) at 300 K and 10 K. The signal and idler output from an OPO pumped 

by a 4 W Ti-sapphire laser is continuously tuned from 0.3 to 1.2 eV.  The polarization is made 

linear by using a wire grid polarizer and then rotated using a CaF2 double Fresnel Rhomb rotator 

to align parallel or perpendicular to the nanowire device.  The laser beam was attenuated to an 
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average power of 200 uW and focused onto the sample using a 40X reflective objective to a 1.3-

5 micron spot varying with the wavelength of the laser. Representative PC spectra are shown at 

both 10 K and 300 K in Fig. 3.  Errors associated with each transition are estimated by at least 2 

to 3 measurements taken at different times on the same device as shown in the Supplemental 

Information.  For the PC spectrum taken at 10K, we see that there is no photocurrent at low 

energies and a clear onset at 0.473 ±  0.002 𝑒𝑒𝑒𝑒 eV for light polarized perpendicularly to the NW 

long axis (c-axis), with a peak appearing at 0.482 ± 0.006 𝑒𝑒𝑒𝑒 signaling the transition from the A 

valence band to CB1.  

For comparison, photoluminescence (PL) measurements were taken on clusters of wires 

dispersed onto a silicon substrate from the same growth by using 800 nm excitation as an 

excitation source.  The laser was chopped at 300 Hz and focused onto the nanowire cluster using 

a 40X/0.5 NA reflective objective.  PL emitted by the NW cluster was collected by the same 

objective and focused onto the entrance slit of a 0.2 m spectrometer and dispersed by a 600 

line/mm grating.  The PL was detected by a lock-in and an InSb pn diode cooled to 77 K.  Below 

the 10 K PC spectra, we display 10 K PL spectrum taken from a cluster of approximately ten similar 

nanowires, which confirms the assignment of the onset and peak from the PC spectrum. The 

fundamental band gap for Wurtzite material is thus 60 meV higher than Zincblende InAs band 

gap as expected from both theory and recent experiments,22,23,24,25,29 ,30 .  
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The photocurrent spectrum for light polarized parallel to the NW (c axis) shows a higher 

energy onset and peaks at 0.550 ± 0.005 𝑒𝑒𝑒𝑒 which is assumed to be the excitation from the B 

valence band to CB1. The peak at 0.915 ± 0.005 𝑒𝑒𝑒𝑒 which is visible for both parallel and 

perpendicular polarizations is assigned to the transition from the third valence band (C) to the 

first conduction band (CB1). 

At higher energies, two additional but weak peaks are observed only for perpendicular 

excitation at 0.988 ± 0.003 𝑒𝑒𝑒𝑒 and 1.065 ± 0.004 𝑒𝑒𝑒𝑒. Based on the selection rules described 

previously, we find these transitions can result from transitions either from A to CB2, or D to CB1. 

In order to most closely match De and Pryor’s calculation for the splitting between CB1 and CB2 

and the splitting between C and D, we assign the 1.065 eV transition to A to CB2 and the 0.988 

eV transition to D to CB126. From this assignment, we find the splitting between CB2 and CB1 to 

be 0.583 ± 0.010 𝑒𝑒𝑒𝑒 (De and Pryor predict a splitting of 0.74 eV).  We find the splitting between 

the D and C valence bands to be 0.073 ± 0.008 𝑒𝑒𝑒𝑒 (De and Pryor predict 0.183 eV).  The energy 

gap and transition energies and energy splittings measured in our experiment are shown in Table 

1 and compared with both theoretical calculations and experiments. 

 Photocurrent spectra taken at 300K (see Fig. 3) shows the first three transitions obeying 

the expected selection rules, but shifted towards lower energy because of the temperature-

dependent shift of the energy gap [35,36,37]. The observed energy splitting between valence 
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bands exhibits no obvious temperature dependence between the 10 K and 300 K measurements, 

consistent with results in the other material [38]. 

 Using the AB and AC splittings obtained from these measurements, it is possible to extract 

the spin-orbit energy and crystal field energy for this structure using the quasi-cubic 

approximation [26,39] shown in equation 2, below: 

  

 ∆𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶=
1
 2

 (∆𝐴𝐴𝐴𝐴 + ∆𝐴𝐴𝐶𝐶 ± �∆𝐴𝐴𝐴𝐴2 + ∆𝐴𝐴𝐶𝐶2 − 4∆𝐴𝐴𝐴𝐴∆𝐴𝐴𝐶𝐶   ) 

 

 

( 2) 

 
 

As noted in several publications equation 2 results in two energies which may be assigned to 

either the SO or the CF energies [6, 26, 34].  The spin-orbit energy results from the constituent In 

and As atoms in these materials so one would expect very similar spin-orbit energies for either 

Wurtzite or Zincblende InAs whose spin-orbit energy is 0.38 eV [40,41].  Equation 2 provides the 

two solutions 0.387 eV and 0.113 eV, for the crystal splitting or spin-orbit splitting. It seems 

reasonable to assign 0.387 eV to the WZ InAs spin orbit energy and 0.113 eV to the crystal field 

energy.  These results are tabulated in Table 1 for both 300 K and 10 K measurements. 
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TABLE 1: The energy bands splitting from the experiments at T=10 K and T=300 K 

 

 Wurtzite InAs  

Eg(eV) ∆AB(eV) ∆AC(eV) ∆AD(eV) ∆CB1-CB2(eV) ∆SO(eV) ∆CF(eV) ∆(EgWZ - EgZB ) 

(eV) 

T=300K 0.438 0.060 0.426 - - 0.387 0.098 0.7 

T=10K 0.482 0.068 0.433 0.505 0.583 0.387 0.113 0.6 

 

 

 

 

5. Discussion 

We now compare the results from our measurements to both theoretical calculations of 

the WZ InAs band structure, and other experimental measurements of the fundamental gap.   

Results from the 10K data is compared with the other theoretical and experimental results in 

Table 2.  De and Pryor calculated the WZ band structure for InAs using empirical pseudopotentials 

[26]. Junior et al calculated the WZ InAs band structure using Density Functional Theorey (DFT) 

with a modified Becke-Johnson (mBJ) exchange potential with Local Density Approximation (LDA) 

correlations [27]. Gimitra and Fabian use DFT with semilocal modified Becke-Johnson exchange 

potentials (TB-mBJ) and with LDA correlations [28].  Bechstedt and Belabbes used DFT with LDA 

exchange and correlations to calculate the band structure of the various InAs polytypes, including 

pure WZ [30].  Zanolli et al used DFT calculations using LDA exchange and correlations followed 

by GW corrections [29].   

The parameters for the various AB and AC valence band splittings, and splittings between 

the two conduction bands, along with SO and CF energies are tabulated from these different 
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calculations in Table 2 and compared with the results here.  While all of the theoretical 

calculations of the fundamental gap agree fairly closely with each other and also with our present 

measurement, there is substantial variability for the other parameters.    For example, theoretical 

estimates of the AB valence band splitting range from 59 to 105 meV as compared with our 

measurement of 70 meV [26,27,28].  The theoretical AC valence band splitting ranges from 350 

to 470 meV as compared with our measurement of 440 meV [26,27,28].  The theoretical crystal 

field energies range from 95 to 195 meV as compared with our measurement of 120 meV [26,30].  

The theoretical spin orbit energies range from 356 to 379 meV while our measurement is 390 

meV [26 ,30].  The largest discrepancy is seen in our measurement of the CB splittings to be 590 

meV with theoretical estimates of the CB splitting substantially higher at 706 to 741 meV [26,28]. 

 

 

 

TABLE 2: Comparison between the experiment results at T= 10 K and other experimental and 

theoretical studies 

 

 Theory Other experiments PC measurement in 

figure 3 (10K) 

Eg (eV) 0.4729  0.4628   

0.48130,26 0.46727 

0.52(7K)23  0.477(11K)22  

0.458(5K)24  0.54(5K)25 

0.43(10K)42 

0.482 

∆AB(eV) 0.06628  0.10526  

0.059227   

 0.068 
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∆AC(eV) 0.3628 0.46926  

0.352727 

 0.433 

∆CB1-CB2(eV) 0.70628  0.74126  0.583 

∆CF(eV) 0.09530  0.19526    0.113 

∆SO(eV) 0.35630  0.37926  0.387 

 

In order to gauge the strength of the polarization selection rules we now look at the 

degree of polarization for these different transitions.  We define the degree of polarization as 

DOP = (I⊥-III)/(I⊥+III) to describe the polarization dependence of the photocurrent spectra.  Based 

on classical electrodynamics, if a cylinder with dielectric constant ε, is placed in an electric field 

E, the component of the internal field parallel to the axis of cylinder is the same as the outside 

field (EII=E0II), but it is attenuated in the perpendicular direction (E⊥= 2
1+ε

 E0⊥) [43]. Since the 

absorbed energy is ∝ E2, for an InAs wire with ε=16.78, for light polarized perpendicular to the 

NW with an intensity of P0 the intensity of light inside the nanowire would be P0/79.  Similarly, 

for light polarized parallel to the NW with an intensity P0 the intensity inside the nanowire would 

also be P0.   The degree of polarization in our nanowire is plotted in Fig. 4 for the 10 K and 300 K 

measurements. A sharp peak centered at 0.48 eV is observed, showing an 85% perpendicularly 

polarized photocurrent around the fundamental band gap energy.  

The response of the device to polarized light is a rather complicated combination of the 

dielectric response of the nanowire itself, and also the optical selection rules.  We attempt to 

disentangle these responses by using the dielectric response derived above.  Assuming that the 

incident power on the nanowire is the same for parallel and perpendicular polarizations, this can 

be expressed as [44]: 
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𝐼𝐼 ∥

= �
2

1 + 𝜀𝜀 ⊥
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( 3) 

 
Where 𝜀𝜀 ⊥ is the real part of the dielectric constant in the direction perpendicular to the c axis 

of wire and 𝛼𝛼 ⊥ is the absorption constant. Since the 𝛼𝛼 ⊥ is directly proportional to the imaginary 

part of the dielectric constant (ε”) [45] and inversely proportional to the index of refraction, and 

we know that ε” is proportional to the oscillator strength (f), we find the perpendicular to parallel 

current ratio to be equal to: 

  

𝐼𝐼 ⊥
𝐼𝐼 ∥

= �
2

1 + 𝜀𝜀 ⊥
�
2 𝑓𝑓 ⊥
𝑓𝑓 ∥

 �
𝜀𝜀 ∥
𝜀𝜀 ⊥

 

 

 

 

( 4) 

 

From our measurement, the ratio of the polarized currents is ~12.5 at the ACB1 transition. By 

using the dielectric constants for light parallel and perpendicular to the c-axis calculated by De 

and Pryor (𝜀𝜀 ∥
𝜀𝜀⊥ 

~ 0.81) [46], we find 𝑓𝑓⊥
𝑓𝑓∥

~1100, which shows that excitation of a dipole 

perpendicular to the nanowire has a much stronger oscillator strength than parallel.  This implies 

that the absorption of parallel polarized light for this lowest energy transition is nearly negligible 

as anticipated from group theory (shown previously) [47,48]. 

 

6. Summary and Conclusions 

 Using polarized PC spectroscopy over the energy range 0.3 to 1.2 eV, we have identified 

the energies of four valence and two conduction bands in Wurtzite InAs nanowires. The results 
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agree well with predicted energy gaps from empirical pseudopotential calculations and the 

polarization of the peaks are in excellent agreement with the optical selection rules for a 

hexagonal material. From the AB and AC valence band splittings, we extract a spin-orbit energy 

of 0.38 eV and a crystal field energy of 0.12 eV for Wurtzite InAs. The splitting between the first 

and second conduction bands is observed to be 0.59 eV.  From the degree of polarization 

measured from the A to CB1 ground state transition we show that the ratio of the perpendicular 

to parallel oscillator strength is ~1100.  Using these band energies, it should now be possible to 

optimize ab initio band structure calculations.  Detailed understanding of the WZ InAs band 

structure will be vital to the development of crystal phase engineering of this important infrared 

optoelectronic and high speed electronic materials system. 
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Figure 1.(a) The SEM image and (b) the TEM of 50 nm diameter Wurtzite InAs nanowires on the 
initial substrate. (c) shows the band diagram of Wurtzite structure and the allowed optical 
transitions from four of the valence band (A, B, C, D) and The two conduction bands (CB1 and CB2) 
considering their symmetries. 
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Figure 2.IV characteristics of Wurtzite InAs nanowire device obtained in the dark and under 
white light illumination at 300K. Inset shows optical image of the nanowire device with Ti/Al 
pads. 
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Figure 3.The photocurrent spectra of a Wurtzite InAs nanowire acquired by exciting the carriers 
with polarization perpendicular to the nanowire (red squares) and parallel to the nanowire 
(blue circles) at temperature 300 K (on the top) and 10 K (bottom). The unpolarized PL spectra 
taken from a nanowire mechanically transferred on a Si substrate, shown by the green triangles 
and the fit solid line, confirms the fundamental bandgap at 10K. The energies of the peaks 
representing different excitations are marked on the diagram. The peaks of the higher 
temperature measurement are shifted to lower energies in comparison with 10K measurement,  
due to increased thermal energy and higher interatomic spacing.  
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Figure 4.Polarization of the photocurrent spectra at 10K and 300K calculated from data shown 
in Fig. 3. 
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