299 research outputs found

    MAP1272c Encodes an NlpC/P60 Protein, an Antigen Detected in Cattle with Johne’s Disease

    Get PDF
    The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that con- tains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne’s disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were ex- pressed and evaluated with sera from cattle with Johne’s disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a dis- tinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis

    MAP1272c Encodes an NlpC/P60 Protein, an Antigen Detected in Cattle with Johne’s Disease

    Get PDF
    The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that con- tains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne’s disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were ex- pressed and evaluated with sera from cattle with Johne’s disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a dis- tinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis

    Interfacial quantum well states of Xe and Kr adsorbed on

    Get PDF
    The energies and dispersions of the image states and quantum well electronic states in layers of Xe and Kr on a Ag͑111͒ substrate were determined by angle-resolved two-photon photoemission ͑ARTPPE͒. For Xe, we measured binding energies of unoccupied electronic states for 1-9 layers and their parallel dispersion out to 4 layers. We measured the binding energies for a monolayer of Kr and dispersions for one and two layers. The nϭ2 and nϭ3 image states of the bare metal evolve into quantum well states of the layer ͑states of the Xe conduction band discretized by the boundary conditions of a 2-D slab͒ at higher Xe thicknesses, where the nϭ2,3 states exhibit both a perpendicular and parallel dispersion similar to that of the bulk Xe conduction band. The nϭ1 state appears to evolve with coverage as an image state screened by the Xe layer, with appreciable electron density in the vacuum. A continuum dielectric model ͑modified image state picture͒ reproduces the gross trends in the data, while an explicit quantum well analysis is used to extract the bulk Xe conduction band dispersion. A simple model which takes into account the band structures of the substrate and the overlayer, as well as the image potential, gives good agreement with the binding energy data. The combination of high energy and momentum resolution along both the surface parallel and surface normal yields very precise measurements of the bulk Xe conduction band as well as information about the behavior of conduction band electrons at interfaces

    Role of CAP350 in Centriolar Tubule Stability and Centriole Assembly

    Get PDF
    BACKGROUND: Centrioles are microtubule-based cylindrical structures composed of nine triplet tubules and are required for the formation of the centrosome, flagella and cilia. Despite theirs importance, centriole biogenesis is poorly understood. Centrosome duplication is initiated at the G1/S transition by the sequential recruitment of a set of conserved proteins under the control of the kinase Plk4. Subsequently, the procentriole is assembled by the polymerization of centriolar tubules via an unknown mechanism involving several tubulin paralogs. METHODOLOGY/PRINCIPAL FINDINGS: Here, we developed a cellular assay to study centrosome duplication and procentriole stability based on its sensitivity to the microtubule-depolymerizing drug nocodazole. By using RNA interference experiments, we show that the stability of growing procentrioles is regulated by the microtubule-stabilizing protein CAP350, independently of hSAS-6 and CPAP which initiate procentriole growth. Furthermore, our analysis reveals the critical role of centriolar tubule stability for an efficient procentriole growth. CONCLUSIONS/SIGNIFICANCE: CAP350 belongs to a new class of proteins which associate and stabilize centriolar tubules to control centriole duplication

    Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability

    Get PDF
    Recent studies have suggested that aneuploidy in malignant tumours could be a consequence of centrosome aberrations. Using immunofluorescence analysis with an antibody against γ-tubulin and DNA image cytometry, we measured centrosome aberrations and DNA ploidy patterns in fine-needle aspiration biopsies (FNABs) of 58 breast lesions. Benign lesions did not show any centrosome aberrations. DNA diploid carcinomas showed a mean percentage of cells with centrosomal defects of 2.1%. The aneuploid invasive carcinomas could be divided into two subgroups by their significantly (P=0.0003) different percentage of cells with centrosome aberrations (2.0 and 10.3%, respectively) and their significantly (P=0.0003) different percentage of cells with nonmodal DNA content values determined by the Stemline Scatter Index (SSI), a measure of genomic instability. The percentage of cells with centrosome aberrations demonstrated a positive, linear correlation with the corresponding SSI (r=0.82, P<0.0001) and loss of tissue differentiation (r=0.78, P<0.0001). Our results indicate the percentage of cells with centrosome aberrations as being sufficient to divide the investigated tumours into three significantly different groups: benign lesions with no centrosomal aberrations, and two malignant tumour types with mean values of 2.1 and 9.6% of centrosomal defects, respectively. Together, these results demonstrate that centrosome aberrations correlate with genomic instability and loss of tissue differentiation. Furthermore, this study shows the feasibility of centrosomal analysis in FNAB of the breast and suggests centrosomal aberrations as possessing diagnostic and prognostic value

    Does Removing Coyotes for Livestock Protection Benefit Free-Ranging Ungulates?

    Get PDF
    We studied the effects of coyote (Canis latrans) control for livestock protection on native ungulates during 2003 and 2004 on 7 sites in Utah and Colorado, USA, totaling over 1,900 km2. We found no relationships between coyote control variables and offspring/female deer ratios. However, control effort (no. of hr spent aerial gunning for coyotes) and success (no. of coyotes taken) were positively correlated with numbers of mule deer (Odocoileus hemionus) and pronghorn (Antilocapra americana) observed per kilometer of transect. Our results suggest that coyote control for livestock protection may increase densities of mule deer and pronghorn in areas where it is conducted

    A Novel Labeling Approach Identifies Three Stability Levels of Acetylcholine Receptors in the Mouse Neuromuscular Junction In Vivo

    Get PDF
    The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased., in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently.A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms

    Quantitative miRNA Expression Analysis Using Fluidigm Microfluidics Dynamic Arrays

    Get PDF
    MicroRNA (miRNA) is a small non-coding RNA that can regulate gene expression in both plants and animals. Studies showed that miRNAs play a critical role in human cancer by targeting messenger RNAs that are positive or negative regulators of cell proliferation and apoptosis. Here, we evaluated miRNA expression in formalin fixed, paraffin embedded (FFPE) samples and fresh frozen (FF) samples using a high throughput qPCR-based microfluidic dynamic array technology (Fluidigm). We compared the results to hybridization-based microarray platforms using the same samples. We obtained a highly correlated Ct values between multiplex and single-plex RT reactions using standard qPCR assays for miRNA expression. For the same samples, the microfluidic technology (Fluidigm 48.48 dynamic array systems) resulted in a left shift towards lower Ct values compared to those observed by standard TaqMan (ABI 7900HT, mean difference, 3.79). In addition, as little as 10ng total RNA was sufficient to reproducibly detect up to 96 miRNAs at a wide range of expression values using a single 96-multiplexing RT reaction in either FFPE or FF samples. Comparison of miRNAs expression values measured by microfluidic technology with those obtained by other array and Next Generation sequencing platforms showed positive concordance using the same samples but revealed significant differences for a large fraction of miRNA targets. The qPCRarray based microfluidic technology can be used in conjunction with multiplexed RT reactions for miRNA gene expression profiling. This approach is highly reproducible and the results correlate closely with the existing singleplex qPCR platform while achieving much higher throughput at lower sample input and reagent usage. It is a rapid, cost effective, customizable array platform for miRNA expression profiling and validation. However, comparison of miRNA expression using different platforms requires caution and the use of multiple platforms
    corecore