23 research outputs found

    Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors.

    Get PDF
    Targeted therapy for patients with HER2-positive (HER2+) breast cancer has improved overall survival, but many patients still suffer relapse and death from the disease. Intratumor heterogeneity of both estrogen receptor (ER) and HER2 expression has been proposed to play a key role in treatment failure, but little work has been done to comprehensively study this heterogeneity at the single-cell level. In this study, we explored the clinical impact of intratumor heterogeneity of ER protein expression, HER2 protein expression, and HER2 gene copy number alterations. Using combined immunofluorescence and in situ hybridization on tissue sections followed by a validated computational approach, we analyzed more than 13 000 single tumor cells across 37 HER2+ breast tumors. The samples were taken both before and after neoadjuvant chemotherapy plus HER2-targeted treatment, enabling us to study tumor evolution as well. We found that intratumor heterogeneity for HER2 copy number varied substantially between patient samples. Highly heterogeneous tumors were associated with significantly shorter disease-free survival and fewer long-term survivors. Patients for which HER2 characteristics did not change during treatment had a significantly worse outcome. This work shows the impact of intratumor heterogeneity in molecular diagnostics for treatment selection in HER2+ breast cancer patients and the power of computational scoring methods to evaluate in situ molecular markers in tissue biopsies

    Copynumber: Efficient algorithms for single- and multi-track copy number segmentation.

    Get PDF
    BACKGROUND: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. RESULTS: A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. CONCLUSIONS: The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer

    Get PDF
    Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p <0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PUS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER disease. None of the expression-based predictors were prognostic in the ER subset. We found that a model including CAM and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAL Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1-1.7) for PFS and 1.3 (95%CI, 1.1-1.6) for OS. This study validates CAM as an independent predictor of survival in both ER+ and ER breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).Publisher PDFPeer reviewe

    Integrative clustering reveals a novel split in the luminal A subtype of breast cancer with impact on outcome

    Get PDF
    Background: Breast cancer is a heterogeneous disease at the clinical and molecular level. In this study we integrate classifications extracted from five different molecular levels in order to identify integrated subtypes. Methods: Tumor tissue from 425 patients with primary breast cancer from the Oslo2 study was cut and blended, and divided into fractions for DNA, RNA and protein isolation and metabolomics, allowing the acquisition of representative and comparable molecular data. Patients were stratified into groups based on their tumor characteristics from five different molecular levels, using various clustering methods. Finally, all previously identified and newly determined subgroups were combined in a multilevel classification using a "cluster-of-clusters" approach with consensus clustering. Results: Based on DNA copy number data, tumors were categorized into three groups according to the complex arm aberration index. mRNA expression profiles divided tumors into five molecular subgroups according to PAM50 subtyping, and clustering based on microRNA expression revealed four subgroups. Reverse-phase protein array data divided tumors into five subgroups. Hierarchical clustering of tumor metabolic profiles revealed three clusters. Combining DNA copy number and mRNA expression classified tumors into seven clusters based on pathway activity levels, and tumors were classified into ten subtypes using integrative clustering. The final consensus clustering that incorporated all aforementioned subtypes revealed six major groups. Five corresponded well with the mRNA subtypes, while a sixth group resulted from a split of the luminal A subtype; these tumors belonged to distinct microRNA clusters. Gain-of-function studies using MCF-7 cells showed that microRNAs differentially expressed between the luminal A clusters were important for cancer cell survival. These microRNAs were used to validate the split in luminal A tumors in four independent breast cancer cohorts. In two cohorts the microRNAs divided tumors into subgroups with significantly different outcomes, and in another a trend was observed. Conclusions: The six integrated subtypes identified confirm the heterogeneity of breast cancer and show that finer subdivisions of subtypes are evident. Increasing knowledge of the heterogeneity of the luminal A subtype may add pivotal information to guide therapeutic choices, evidently bringing us closer to improved treatment for this largest subgroup of breast cancer.Peer reviewe

    Living in synchrony on Greenland coasts?

    No full text
    Theory indicates that correlated weather may synchronize populations1, but the extent to which this holds for non-identical, nonlinear systems is uncertain. Post and Forchhammer2 claim to have shown climate-induced synchrony for musk oxen and caribou that are separated by the Greenland ice sheet. However, logical and mathematical errors undermine their finding. Whether or not large-scale weather can be a major synchronizing factor across species remains an open question. (Journal)Peer Reviewe

    Living in synchrony on Greenland coasts?

    Get PDF
    Theory indicates that correlated weather may synchronize populations1, but the extent to which this holds for non-identical, nonlinear systems is uncertain. Post and Forchhammer2 claim to have shown climate-induced synchrony for musk oxen and caribou that are separated by the Greenland ice sheet. However, logical and mathematical errors undermine their finding. Whether or not large-scale weather can be a major synchronizing factor across species remains an open question. (Journal)Peer Reviewe

    License Artistic-2.0 LazyData yes Date 2013-04-16

    No full text
    Description Penalized least squares regression is applied to fit piecewise constant curves to copy number data to locate genomic regions of constant copy number. Procedures are available for individual segmentation of each sample, joint segmentation of several samples and joint segmentation of the two data tracks from SNP-arrays. Several plotting functions are available for visualization of the data and the segmentation results

    miRNA normalization enables joint analysis of several datasets to increase sensitivity and to reveal novel miRNAs differentially expressed in breast cancer

    Get PDF
    Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer.Peer reviewe

    Prognostic Significance of the Loss of Heterozygosity of KRAS in Early-Stage Lung Adenocarcinoma

    No full text
    Lung cancer is a common disease with a poor prognosis. Genomic alterations involving the KRAS gene are common in lung carcinomas, although much is unknown about how different mutations, deletions, and expressions influence the disease course. The first approval of a KRAS-directed inhibitor was recently approved by the FDA. Mutations in the KRAS gene have been associated with poor prognosis for lung adenocarcinomas, but implications of the loss of heterozygosity (LOH) of KRAS have not been investigated. In this study, we have assessed the LOH of KRAS in early-stage lung adenocarcinoma by analyzing DNA copy number profiles and have investigated the effect on patient outcome in association with mRNA expression and somatic hotspot mutations. KRAS mutation was present in 36% of cases and was associated with elevated mRNA expression. LOH in KRAS was associated with a favorable prognosis, more prominently in KRAS mutated than in wild-type patients. The presence of both LOH and mutation in KRAS conferred a better prognosis than KRAS mutation alone. For wild-type tumors, no difference in prognosis was observed between patients with and without LOH in KRAS. Our study indicates that LOH in KRAS is an independent prognostic factor that may refine the existing prognostic groups of lung adenocarcinomas
    corecore