95 research outputs found

    Understanding the Status of Important Criteria Air Pollutants and Its Health Effects – A Review

    Get PDF
    In India, airborne pollutant is serious, and a growing illness cause of concern, adding considerably to the country\u27s disease burden. Atmospheric effects are generally known to have several harmful health implications. India\u27s air pollution has risen significantly because of population expansion, rising vehicle numbers, fuel usage, inefficient transit networks, poor land use patterns, industrialisation, and most importantly, insufficient environmental legislation. Because air pollution is a major factor, this has an impact on human health. People gradually understood that contaminated outdoor air had detrimental consequences on human health. Hypercholesterolemia, breathing problems, chronic obstructive pulmonary disease (COPD), and asthma are all connected to ambient air pollution on a global scale. The purpose of this research is to review the literature on air quality and how it impacts population livelihoods

    Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases

    Get PDF
    Oxidative damage represents a major threat to genomic stability, as the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. In order to prevent these mutagenic events, organisms have evolved GO-DNA glycosylases that remove this oxidized base from DNA. We were interested to find out how GO is processed in the hyperthermophilic archaeon Pyrobaculum aerophilum, which lives at temperatures around 100 degrees C. To this end, we searched its genome for open reading frames (ORFs) bearing the principal hallmark of GO-DNA glycosylases: a helix-hairpin-helix motif and a glycine/proline-rich sequence followed by an absolutely conserved aspartate (HhH-GPD motif). Interestingly, although the P.aerophilum genome encodes three such ORFs, none of these encodes the potent GO-processing activity detected in P.aerophilum extracts. Fractionation of the extracts, followed by analysis of the active fractions by denaturing polyacrylamide gel electrophoresis, showed that the GO-processing enzyme has a molecular size of approximately 30 kDa. Mass spectrometric analysis of proteins in this size range identified several peptides originating from P.aerophilum ORF PAE2237. We now show that PAE2237 encodes AGOG (Archaeal GO-Glycosylase), the founding member of a new family of DNA glycosylases, which can remove GO from single- and double-stranded substrates with great efficienc

    A brief review of the impact of silver nanoparticles on agriculture and certain biological properties: A case study

    Get PDF
    Nanotechnology is progressively becoming a popular field of research because it has been successful in changing our agricultural and food systems. According to research published by the UNFAO, agriculture as well as its derivatives would be in high demand sooner or later, owing to nutritional changes. Nanoparticles have been reported to be used in an agricultural sector, because of its capacity to encourage crop growth and yield. Among metal nanoparticles, Silver Nanoparticles (AgNPs) are attracting a lot of attention. We have highlighted some of the agricultural uses of AgNPs, which include pest management, plant disease detection, crop enhancement, and crop production

    A Reconfigurable Quantum Local Area Network Over Deployed Fiber

    Full text link
    Practical quantum networking architectures are crucial for scaling the connection of quantum resources. Yet quantum network testbeds have thus far underutilized the full capabilities of modern lightwave communications, such as flexible-grid bandwidth allocation. In this work, we implement flex-grid entanglement distribution in a deployed network for the first time, connecting nodes in three distinct campus buildings time-synchronized via the Global Positioning System (GPS). We quantify the quality of the distributed polarization entanglement via log-negativity, which offers a generic metric of link performance in entangled bits per second. After demonstrating successful entanglement distribution for two allocations of our eight dynamically reconfigurable channels, we demonstrate remote state preparation -- the first realization on deployed fiber -- showcasing one possible quantum protocol enabled by the distributed entanglement network. Our results realize an advanced paradigm for managing entanglement resources in quantum networks of ever-increasing complexity and service demands

    Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    Get PDF
    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop.National Institutes of Health (U.S.) (grant no. P30-ES002109)National Institutes of Health (U.S.) (grant no. GM65337)National Institutes of Health (U.S.) (grant no. GM65337-03S2)National Institutes of Health (U.S.) (grant no. CA055042)National Institutes of Health (U.S.) (grant no. CA092584)Repligen Corporation (KIICR Graduate Fellowship

    The Role of Purported Mucoprotectants in Dealing with Irritable Bowel Syndrome, Functional Diarrhea, and Other Chronic Diarrheal Disorders in Adults

    Get PDF
    Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier

    Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer.

    Get PDF
    Although defects in the RB1 tumour suppressor are one of the more common driver alterations found in triple-negative breast cancer (TNBC), therapeutic approaches that exploit this have not been identified. By integrating molecular profiling data with data from multiple genetic perturbation screens, we identified candidate synthetic lethal (SL) interactions associated with RB1 defects in TNBC. We refined this analysis by identifying the highly penetrant effects, reasoning that these would be more robust in the face of molecular heterogeneity and would represent more promising therapeutic targets. A significant proportion of the highly penetrant RB1 SL effects involved proteins closely associated with RB1 function, suggesting that this might be a defining characteristic. These included nuclear pore complex components associated with the MAD2 spindle checkpoint protein, the kinase and bromodomain containing transcription factor TAF1, and multiple components of the SCFSKP Cullin F box containing complex. Small-molecule inhibition of SCFSKP elicited an increase in p27Kip levels, providing a mechanistic rationale for RB1 SL. Transcript expression of SKP2, a SCFSKP component, was elevated in RB1-defective TNBCs, suggesting that in these tumours, SKP2 activity might buffer the effects of RB1 dysfunction

    Tight junctions: from simple barriers to multifunctional molecular gates

    Get PDF
    Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions
    • …
    corecore