70 research outputs found

    Mentor points: pilot year evaluation

    Get PDF

    Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-based Ensembles

    Get PDF
    A recent experimental evaluation assessed 19 time series classification (TSC) algorithms and found that one was significantly more accurate than all others: the Flat Collective of Transformation-based Ensembles (Flat-COTE). Flat-COTE is an ensemble that combines 35 classifiers over four data representations. However, while comprehensive, the evaluation did not consider deep learning approaches. Convolutional neural networks (CNN) have seen a surge in popularity and are now state of the art in many fields and raises the question of whether CNNs could be equally transformative for TSC. We implement a benchmark CNN for TSC using a common structure and use results from a TSC-specific CNN from the literature. We compare both to Flat-COTE and find that the collective is significantly more accurate than both CNNs. These results are impressive, but Flat-COTE is not without deficiencies. We significantly improve the collective by proposing a new hierarchical structure with probabilistic voting, defining and including two novel ensemble classifiers built in existing feature spaces, and adding further modules to represent two additional transformation domains. The resulting classifier, the Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE), encapsulates classifiers built on five data representations. We demonstrate that HIVE-COTE is significantly more accurate than Flat-COTE (and all other TSC algorithms that we are aware of) over 100 resamples of 85 TSC problems and is the new state of the art for TSC. Further analysis is included through the introduction and evaluation of 3 new case studies and extensive experimentation on 1000 simulated datasets of 5 different types

    HIVE-COTE: The hierarchical vote collective of transformation-based ensembles for time series classification:IEEE International Conference on Data Mining

    Get PDF
    There have been many new algorithms proposed over the last five years for solving time series classification (TSC) problems. A recent experimental comparison of the leading TSC algorithms has demonstrated that one approach is significantly more accurate than all others over 85 datasets. That approach, the Flat Collective of Transformation-based Ensembles (Flat-COTE), achieves superior accuracy through combining predictions of 35 individual classifiers built on four representations of the data into a flat hierarchy. Outside of TSC, deep learning approaches such as convolutional neural networks (CNN) have seen a recent surge in popularity and are now state of the art in many fields. An obvious question is whether CNNs could be equally transformative in the field of TSC. To test this, we implement a common CNN structure and compare performance to Flat-COTE and a recently proposed time series-specific CNN implementation.We find that Flat-COTE is significantly more accurate than both deep learning approaches on 85 datasets. These results are impressive, but Flat-COTE is not without deficiencies. We improve the collective by adding new components and proposing a modular hierarchical structure with a probabilistic voting scheme that allows us to encapsulate the classifiers built on each transformation. We add two new modules representing dictionary and interval-based classifiers, and significantly improve upon the existing frequency domain classifiers with a novel spectral ensemble. The resulting classifier, the Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is significantly more accurate than Flat-COTE and represents a new state of the art for TSC. HIVE-COTE captures more sources of possible discriminatory features in time series and has a more modular, intuitive structure

    Hiding in the Shadows II: Collisional Dust as Exoplanet Markers

    Get PDF
    Observations of the youngest planets (\sim1-10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake even in ideal circumstances. Therefore, we propose the determination of a set of markers that can pre-select promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μ\mum for a low eccentricity planet, whereas a high eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.Comment: Accepted for publication in Ap

    Mosquito net coverage in years between mass distributions: a case study of Tanzania, 2013.

    Get PDF
    BACKGROUND: The Government of Tanzania is the main source of long-lasting insecticidal nets (LLINs) for its population. Mosquito nets (treated and untreated) are also available in the commercial market. To sustain investments and health gains in the fight against malaria, it is important for the National Malaria Control Programme to monitor LLIN coverage especially in the years between mass distributions and to understand what households do if their free nets are deemed unusable. The aim of this paper was to assess standard LLIN indicators by wealth status in Tanzania in 2013, 2 years after the last mass campaign in 2011, and extend the analysis to untreated nets (UTNs) to investigate how households adapt when nets are not continuously distributed. METHODS: Between October-December 2013, a household survey was conducted in 3398 households in eight districts in Tanzania. Using the Roll Back Malaria indicators, the study analysed: (1) household net ownership; (2) access to nets; (3) population net use and (4) net use:access ratio. Outcomes were calculated for LLINs and UTNs. Results were analysed by socio-economic quintiles and by district. RESULTS: Only three of the eight districts had household LLIN ownership of more than 80%. In 2013, less than a quarter of the households had one LLIN for every two people and only half of the population had access to an LLIN. Only the wealthier quintiles increased their net ownership and access to levels above 80% through the addition of UTNs. Overall net use of the population was low (LLINs: 32.8%; UTNs: 9.5%) and net use:access ratio was below target level (LLINs: 0.66; UTN: 0.50). Both measures varied significantly by district. CONCLUSIONS: Two years after the last mass campaign, the percentage of households or population with access to LLINs was low. These findings indicate the average rate at which households in Tanzania lose their nets is higher than the rate at which they acquire new nets. The wealthiest households topped up their household net ownership with UTNs. Efforts to make LLINs available through commercial markets should be promoted, so those who can afford to buy nets purchase LLINs rather than UTNs. Net use was low around 40% and mostly explained by lack of access to nets. However, the use:access ratio was poor in Mbozi and Kahama districts warranting further investigations to understand other barriers to net use

    Measuring Socioeconomic Inequalities in Relation to Malaria Risk: A Comparison of Metrics in Rural Uganda.

    Get PDF
    Socioeconomic position (SEP) is an important risk factor for malaria, but there is no consensus on how to measure SEP in malaria studies. We evaluated the relative strength of four indicators of SEP in predicting malaria risk in Nagongera, Uganda. A total of 318 children resident in 100 households were followed for 36 months to measure parasite prevalence routinely every 3 months and malaria incidence by passive case detection. Household SEP was determined using: 1) two wealth indices, 2) income, 3) occupation, and 4) education. Wealth Index I (reference) included only asset ownership variables. Wealth Index II additionally included food security and house construction variables, which may directly affect malaria. In multivariate analysis, only Wealth Index II and income were associated with the human biting rate, only Wealth Indices I and II were associated with parasite prevalence, and only caregiver's education was associated with malaria incidence. This is the first evaluation of metrics beyond wealth and consumption indices for measuring the association between SEP and malaria. The wealth index still predicted malaria risk after excluding variables directly associated with malaria, but the strength of association was lower. In this setting, wealth indices, income, and education were stronger predictors of socioeconomic differences in malaria risk than occupation

    Supporting self-management for patients with Interstitial Lung Diseases:Utility and acceptability of digital devices

    Get PDF
    INTRODUCTION: Patients diagnosed with Interstitial Lung Diseases (ILD) use devices to self-monitor their health and well-being. Little is known about the range of devices, selection, frequency and terms of use and overall utility. We sought to quantify patients' usage and experiences with home digital devices, and further evaluate their perceived utility and barriers to adaptation.METHODS: A team of expert clinicians and patient partners interested in self-management approaches designed a 48-question cross-sectional electronic survey; specifically targeted at individuals diagnosed with ILD. The survey was critically appraised by the interdisciplinary self-management group at Royal Devon University Hospitals NHS Foundation Trust during a 6-month validation process. The survey was open for participation between September 2021 and December 2022, and responses were collected anonymously. Data were analysed descriptively for quantitative aspects and through thematic analysis for qualitative input.RESULTS: 104 patients accessed the survey and 89/104 (86%) reported a diagnosis of lung fibrosis, including 46/89 (52%) idiopathic pulmonary fibrosis (IPF) with 57/89 (64%) of participants diagnosed &gt;3 years and 59/89 (66%) female. 52/65(80%) were in the UK; 33/65 (51%) reported severe breathlessness medical research council MRC grade 3-4 and 32/65 (49%) disclosed co-morbid arthritis or joint problems. Of these, 18/83 (22%) used a hand- held spirometer, with only 6/17 (35%) advised on how to interpret the readings. Pulse oximetry devices were the most frequently used device by 35/71 (49%) and 20/64 (31%) measured their saturations more than once daily. 29/63 (46%) of respondents reported home-monitoring brought reassurance; of these, for 25/63 (40%) a feeling of control. 10/57 (18%) felt it had a negative effect, citing fluctuating readings as causing stress and 'paranoia'. The most likely help-seeking triggers were worsening breathlessness 53/65 (82%) and low oxygen saturation 43/65 (66%). Nurse specialists were the most frequent source of help 24/63 (38%). Conclusion: Patients can learn appropriate technical skills, yet perceptions of home-monitoring are variable; targeted assessment and tailored support is likely to be beneficial.</p

    Impact of different mosquito collection methods on indicators of Anopheles malaria vectors in Uganda.

    Get PDF
    BACKGROUND: Methods used to sample mosquitoes are important to consider when estimating entomologic metrics. Human landing catches (HLCs) are considered the gold standard for collecting malaria vectors. However, HLCs are labour intensive, can expose collectors to transmission risk, and are difficult to implement at scale. This study compared alternative methods to HLCs for collecting Anopheles mosquitoes in eastern Uganda. METHODS: Between June and November 2021, mosquitoes were collected from randomly selected households in three parishes in Tororo and Busia districts. Mosquitoes were collected indoors and outdoors using HLCs in 16 households every 4 weeks. Additional collections were done indoors with prokopack aspirators, and outdoors with pit traps, in these 16 households every 2 weeks. CDC light trap collections were done indoors in 80 households every 4 weeks. Female Anopheles mosquitoes were identified morphologically and Anopheles gambiae sensu lato were speciated using PCR. Plasmodium falciparum sporozoite testing was done with ELISA. RESULTS: Overall, 4,891 female Anopheles were collected, including 3,318 indoors and 1,573 outdoors. Compared to indoor HLCs, vector density (mosquitoes per unit collection) was lower using CDC light traps (4.24 vs 2.96, density ratio [DR] 0.70, 95% CIs 0.63-0.77, p < 0.001) and prokopacks (4.24 vs 1.82, DR 0.43, 95% CIs 0.37-0.49, p < 0.001). Sporozoite rates were similar between indoor methods, although precision was limited. Compared to outdoor HLCs, vector density was higher using pit trap collections (3.53 vs 6.43, DR 1.82, 95% CIs 1.61-2.05, p < 0.001), while the sporozoite rate was lower (0.018 vs 0.004, rate ratio [RR] 0.23, 95% CIs 0.07-0.75, p = 0.008). Prokopacks collected a higher proportion of Anopheles funestus (75.0%) than indoor HLCs (25.8%), while pit traps collected a higher proportion of Anopheles arabiensis (84.3%) than outdoor HLCs (36.9%). CONCLUSION: In this setting, the density and species of mosquitoes collected with alternative methods varied, reflecting the feeding and resting characteristics of the common vectors and the different collection approaches. These differences could impact on the accuracy of entomological indicators and estimates of malaria transmission, when using the alternative methods for sampling mosquitos, as compared to HLCs
    corecore