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9 A recent experimental evaluation assessed 19 time series classification (TSC) algorithms and found that one 
10 was significantly more accurate than all others: the Flat Collective of Transformation-based Ensembles (Flat- 
11 COTE). Flat-COTE is an ensemble that combines 35 classifiers over four data representations. However, while 
12 comprehensive, the evaluation did not consider deep learning approaches. Convolutional neural networks 
13 (CNN) have seen a surge in popularity and are now state of the art in many fields and raises the question of 
14 whether CNNs could be equally transformative for TSC. 
15 We implement a benchmark CNN for TSC using a common structure and use results from a TSC-specific CNN 
16 from the literature. We compare both to Flat-COTE and find that the collective is significantly more accurate 

than both CNNs. These results are impressive, but Flat-COTE is not without deficiencies. We significantly 
17 improve the collective by proposing a new hierarchical structure with probabilistic voting, defining  and 
18 including two novel ensemble classifiers built in existing feature spaces, and adding further modules to 
19 represent two additional transformation domains. The resulting classifier, the Hierarchical Vote Collective of 
20 Transformation-based Ensembles (HIVE-COTE), encapsulates classifiers built on five data representations. We 
21 demonstrate that HIVE-COTE is significantly more accurate than Flat-COTE (and all other TSC algorithms that 
22 we are aware of) over 100 resamples of 85 TSC problems and is the new state of the art for TSC. Further analysis 
23 is included through the introduction and evaluation of 3 new case studies and extensive experimentation on 
24 1000 simulated datasets of 5 different types. 
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1 1 INTRODUCTION 
2 Time series classification (TSC) problems arise across a rich and diverse range of domains. We may 
3 consider any ordered data to be a time series, which allows the definition to encompass data from 
4 various fields such as finance, biology, medicine, and engineering. The diversity of such data is easily 
5 apparent when visiting the University of California, Riverside/University of East Anglia (UCR/UEA) 
6 time series classification repository1  (Bagnall et al. 2016). The UCR/UEA datasets consist of 85 
7 varied and freely available problems that are used throughout the TSC literature. 
8 Given the ubiquitous nature and easy availability of data, many researchers have proposed 
9 algorithms for solving TSC problems. The greatest research emphasis has been focused on classifying 
10 problems in the time domain through using the raw series, typically defining new elastic distance 
11 measures to couple with nearest neighbour classifiers (Jeong et al. 2011;Marteau2009;Stefan et al . 
12 2013). Other approaches have also been proposed however, including dictionary and interval-based 
13 techniques (Deng et al. 2013;Lin et al . 2012;Schäfer2015;Ye and Keogh2011), ensemble algorithms 
14 (Bagnall et al. 2015;Lines and Bagnall2015), and transformation-based approaches (Bagnall et al . 
15 2012;Górecki and Łuczak2014;Hills et al.2014;Kate2016). 
16 The wealth of solutions that one could choose from when addressing a new TSC problem raises 
17 the question of which technique(s) should be considered? A recent empirical evaluation was carried 
18 out by (Bagnall et al. 2016) where 19 published TSC algorithms were implemented and tested 
19 in a common framework2. Experimentation was extensive; each algorithm was tested over 100 
20 resamples of the 85 UCR/UEA datasets. The results showed that, while there are many competitive 
21 TSC algorithms with their own merits, one approach significantly outperformed all others in terms 
22 of average classification accuracy. This approach, the Collective of Transformation-based Ensembles 
23 (COTE) (Bagnall et al. 2015), combines classifiers built on four alternate representations of TSC 
24 problems, where the most effective ensembling strategy was found to combine all classifiers into a 
25 fiat hierarchy (Flat-COTE). 
26 While this study evaluated the leading TSC algorithms that had previously been evaluated on 
27 the UCR/UEA datasets, it did not include any deep learning methods. Deep learning approaches 
28 have seen a recent surge in popularity in other fields, with convolutional neural networks (CNN) in 
29 particular garnering state-of-the-art results across tasks such as image processing, natural language 
30 processing, and speech recognition (Graves et al. 2013;Kalchbrenner et al . 2014;Krizhevsky et al . 
31 2012). It is natural to ask whether CNNs could have such an impact on the field of TSC. 
32 Our work seeks address two questions: first, is Flat-COTE more accurate than deep learning 
33 approaches for TSC? We implement a CNN using a common framework and conduct experiments 
34 on 85 datasets, and we also consider a recently published TSC-specific CNN implementation (Cui 
35 et al. 2016) with results over 44 datasets. We demonstrate that Flat-COTE is significantly more 
36 accurate than both deep learning approaches. However, despite its impressive performance, Flat- 
37 COTE has certain deficiencies. This leads to our second question: can we improve on Flat-COTE and 
38 define a better collective? We answer this by defining a new collective through a number of steps. 
39 First, we formally define a heterogeneous ensemble of standard classification algorithms (HESCA) 
40 that can be applied to both standard classification problems and TSC problems that have been 
41 transformed into alternative feature spaces. We demonstrate the merits of HESCA and justify its 
42 adoption through experimentation on 72 standard classification problems, subsequently applying 
43 HESCA to shapelet-transformed data in our new collective. Second, we significantly improve upon 
44 the current spectral approaches in Flat-COTE and replace them with a new random interval spectral 
45 ensemble (RISE). Third, we assimilate classifiers from two further data representations into the 
46    

47 
1UCR/UEA TSC Repository:www .timeseriesclassification.com 

48 
2UEA TSC Code Base:bitbucket .org/TonyBagnall/time-series-classification 
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1 collective, and include the original whole series approach from Flat-COTE. Finally, we introduce 
2 a modular hierarchical structure for the collective with a probabilistic voting scheme that allows 
3 us to encapsulate classifiers built on each domain. The resulting meta-ensemble, the Hierarchical 
4 Vote Collective of Transformation-based Ensembles (HIVE-COTE), contains modules that capture 
5 similarity with whole series measures (Elastic Ensemble), phase-independent subseries (Shapelet 
6 Transform with HESCA), an interval-based ensemble (Time Series Forest), a dictionary ensemble 
7 (Bag-of-SFA-Symbols), and our new spectral ensemble, RISE. HIVE-COTE captures more sources 
8 of possible discriminatory features in time series and has a more modular, intuitive structure. 
9 More importantly, we show that HIVE-COTE is significantly more accurate than Flat-COTE over 
10 100 resamples of 85 datasets and it represents a new state of the art for TSC. We compliment 
11 these results with a detailed analysis of HIVE-COTE and its individual modules over five types of 
12 simulated data and three new case studies. All of our code and data is available from a public code 
13 repository and accompanying website 3. 
14 

15 2 TIME SERIES CLASSIFICATION BACKGROUND 
16 There have been many algorithms proposed in the literature for solving TSC problems. Due to the 
17 rich and diverse nature of these solutions, we believe that the best way to understand them is to 
18 group them by the type of discriminatory features that they use. Figure1includes generated series 
19 the exhibit typical discriminatory characteristics that we would expect for each type of similarity. 
20 

21 2.1 Whole series 
22 Whole series techniques compare two series either as a vector (as with traditional classification) or 
23 by a distance measure that uses all data points. In the latter case, measures are typically  combined 
24 with one-nearest neighbour (1-NN) classifiers and the simplest variant is to compare series using 
25 Euclidean Distance. However, this baseline is easily beaten in practice, and most research effort has 
26 been directed toward finding techniques that can compensate for small misalignments between 
27 series using elastic distance measures. The almost universal benchmark for whole series measures 
28 is Dynamic Time Warping (DTW) but numerous alternatives have been proposed. These involve 
29 alternative warping criteria (Jeong et al. 2011), using versions of edit distance (Marteau2009;Stefan 
30 et al. 2013) and transforming to use first order differences (Batista et al. 2014;Górecki and Łuczak 
31 2014). The most accurate whole series approach in the recent experimental evaluation by (Bagnall 
32 et al. 2016) was the Elastic Ensemble (EE). (Lines and Bagnall2015) created an ensemble of 1-NN 
33 classifiers using various elastic measures, combining them through a proportional voting scheme. 
34 The example series in Figure1bdemonstrates a simple example of a whole series problem where 
35 class membership is defined by the presence of a global base shape, where the shape starts at a 
36 random location in the series and stretches between 10% and 100% of the full length. Measures 
37 such as DTW detect this type of similarity by mitigating against this phase-shift/warping. 
38 

39 2.2 Intervals 
40 Rather than use the whole series, the interval class of algorithm select one or more phase-dependent 
41 intervals of the series. At its simplest, this involves a feature selection of a contiguous subset of 
42 attributes. However, the three most effective techniques generate multiple intervals, each of which 
43 is processed and forms the basis of a member of an ensemble classifier (Baydogan and Runger2016; 
44 Baydogan et al. 2013;Deng et al . 2013). Figure1cdemonstrates a simulated example where there 
45 are three discriminatory intervals within the problem, and class membership is defined by features 
46 extracted within each interval. 
47 

3www.timeseriesclassification.com/acm2017.php 

http://www.timeseriesclassification.com/acm2017.php


 

 

 

1 2.3 Shapelets 
2 Shapelet approaches are a family of algorithms that focus on finding short patterns that define a 
3 class and can appear anywhere in the series. A class is distinguished by the presence or absence of 
4 one or more shapelets somewhere in the whole series. Shapelets were first introduced by (Ye and 
5 Keogh2011). The two leading ways of finding shapelets are through enumerating the candidate 
6 shapelets in the training set (Hills et al. 2014;Lines et al . 2012) or searching the space of all possible 
7 shapelets with a form of gradient descent (Grabocka et al. 2014). The simulated example in Figure1d 
8 shows a problem where class membership is defined by an embedded shapelet. Unlike the previous 
9 interval example, the discriminatory feature may appear at any position within the series rather 
10 than being fixed to a constrained interval. 
11 

12 2.4 Dictionary-based 
13 

Shapelet algorithms look for subseries patterns that identify a class through presence or absence. 
14 

However, if a class is defined by the frequency of a pattern, shapelet approaches will be poor. Dictio- 
15 

nary approaches address this by forming frequency counts of repeated patterns. They approximate 
16 

and reduce the dimensionality of series by transforming into representative words, then compute 
17 

similarity by comparing the distribution of words (Lin et al. 2012;Schäfer2015). The simulated 
18 

series in Figure1eis an example of a two class problem where instances of each class contain 
19 

repetitions of the same two base shapes, but each class favours repetitions of one shape over the 
20 

other. This type of data should confound shapelet classifiers as the same two shapes will appear in 
21 

all series at least once. 
22 

23 2.5 Spectral 
24 

The frequency domain will often contain discriminatory information that is hard to detect in 
25 

the time domain. Methods include constructing an autoregressive model (Bagnall and Janacek 
26 

2014;Corduas and Piccolo2008) or combinations of autocorrelation, partial autocorrelation and 
27 

autoregressive features (Bagnall et al. 2015). To demonstrate such data, Figure1fprovides an 
28 

example generated using two autoregressive models, one per class, embedded in noise. It is unlikely 
29 

that the other groups of classifiers would be able to approximate this type of similarity as it is not 
30 

clearly apparent in the time domain. 
31 

32 2.6 Combinations of the Previous and Ensemble Classifiers 
33 

Two or more of the above approaches can be combined into a single classifier. For example, 
34 

concatenating different feature spaces (Kate2016), forward selection of features for a linear classifier 35 
(Fulcher and Jones2014), and transformation into a feature space that represents each group and 

36 
ensembling classifiers together (Bagnall et al. 2015). More generally, ensemble classifiers contain a 

37 
set of base classifiers where individual predictions are combined through some process of fusion to 38 
classify new cases. A key design principle is to inject diversity amongst constituent classifiers; this 

39 
is typically achieved by building duplicates of the same base learner and exposing each to different 40 
training conditions. For example, this could be achieved by training each on a different subset 

41 
of attributes, building each with different subsets of the training data, modifying each through 42 
instance reweighting or internal randomisation, or a combination of these approaches. Examples 

43 
in the literature include bagging (Breiman1996), which engenders diversity by boostrap sampling 

44 
training data with replacement for each constituent classifier. Adaptive boosting (AdaBoost) (F 45 
and Schapire1996) iteratively reweights the sampling distribution of the training data based on 

46 
training accuracies of learners at each iteration. Multiboost (Webb2000) uses a combination of ideas 

47 
from bagging and boosting. Two highly-cited classification algorithms are themselves ensembles of 
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the process used to generate the series is described in more detail later in Section8.3. For clarity, 

43 we present these series with low noise added to aid interpretability; we add standard noise in Section8.3to 
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1 decision tree classifiers; Random Forest (Breiman2001) uses a combination of bagging and random 
2 attribute sampling to inject diversity; Rotation Forest (Rodriguez et al. 2006) uses all training data 
3 for each tree but partitions the attribute space and transforms the data using principle component 
4 analysis, We  believe a straight-forward and effective technique for introducing diversity  into 
5 an ensemble is to simply start with a pool of different classification algorithms as constituents. 
6 However, such heterogeneous ensembles are far less common in the literature. 
7 

8 2.7 Experimental Comparison of TSC Classifiers 
9 The results from a recent experimental evaluation of the leading TSC algorithms from each of the 
10 previous groups by (Bagnall et al. 2016) are summarised in the critical difference (CD) diagram 
11 in Figure2. CD diagrams were introduced by (Demšar2006). They show the average ranks of 
12 multiple classifiers over multiple datasets and summarise a significance test between the ranks. 
13 The horizontal black bars are cliques; if two classifiers are in the same clique, their ranks are not 
14 significantly different (found using a Nemenyi post-hoc test). If they are not in the same clique, 
15 they are significantly different. The main conclusion of (Bagnall et al. 2016) is that Flat-COTE is 
16 significantly more accurate than all the other classifiers evaluated, representing the current state of 
17 the art for TSC. 
18 
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32 

33 Fig. 2. The critical diKerence diagram of the top 9 classifiers taken from (Bagnall et al. 2016): Flat-COTE, ST 
34 (Shapelet Transform Ensemble), BOSS (Bag-of-SFA-Symbols), EE (Elastic Ensemble), DTWF (DTW Features), 
35 TSF (Time Series Forest), TSBF (Time Series Bag-of-features), LPS (Learned PaNern Similarity), and MSM 
36 (Move-Split-Merge). 

37 

38 

39 3 FLAT-COTE 
40 

Figure3shows the overall structure of Flat-COTE and how it combines 35 classifiers into a single 
41 

ensemble. It contains the constituent classifiers from the whole series TSC ensemble, EE (11 whole 42 
series classifiers), 8 classifiers built on shapelet-transformed problems, and 16 spectral classifiers (8 

43 
built on autocorrelation features, 8 using the power spectrum). Each classifier is built independently 

44 
and produces separate training accuracies. Given a test instance, each individual classifier  outputs 45 
a single class prediction. The prediction of each classifier is weighted by its training accuracy, and 

46 
weighted test predictions are pooled. The class value with the highest combined vote is output as 

47 
the prediction by Flat-COTE. This generic proportional ensemble scheme is outlined in Algorithm1. 
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1 Algorithm 1 ProportionalEnsemble(classifiers, train, test) 
2 1: t r ainAccs = ; 
3 2:  for i 1 to cl assi f ier s do 

3: t r ainAccsi = findTrainingAcc(t r ain, cl assi f ier s i ) 
4 4: cl assi f ier si .buildClassifier(t r ain) 
5 5: t est P r eds = 

6:  for i 1 to t est do 
6 7: vot es = 
7 8: bs f W eight = 1; 

9: bs f Cl ass = 1; 
8 10: for j 1 to cl assi f ier s do 
9 11: p = cl assi f ier sj .classify(t esti ) 

12: vot esp = vot esp + t r ainAccsj ; 
10 13: if vot esp > bs f W eight then 
11 14: bs f W eight = vot esp 

15: bs f Cl ass = p 
16: t est P r edsi = bs f Cl ass 

13 17: return t est P r eds 

14 

15 

16 The results of the experimental evaluation by (Bagnall et al. 2016) demonstrated that Flat-COTE 
17 is significantly more accurate than any of the other algorithms that were evaluated. However, the 
18 conclusions give rise to several questions: 
19 

(1) Could a classifier from a different area of machine learning do better? The evaluation by 
20 

(Bagnall et al. 2016) considered many such approaches, but an obvious omission were deep 21 
learning algorithms. 22 

(2) Does the fiat structure cause a lack of robustness? For example, Flat-COTE contains 11 23 
whole series classifiers, while the shapelet, ACF, and PS representations only have 8 each. 24 
This gives the classifiers taken from EE a higher weight in Flat-COTE. Also, EE contains full 25 
DTW and windowed DTW; in cases where the optimal window is 100%, these classifiers 26 
will be identical but have two votes out of the 35. Conversely, if we included a tree-based 27 
ensemble (such as TSF) with 500 classifiers, do we give it one compound vote, or 500 28 
individual votes? Either is undesirable. 29 

(3)  Can we improve upon the current spectral methods used in Flat-COTE? The ACF and PS 30 
classifiers make up almost 50% of Flat-COTE, yet the features are deterministically linked 31 
and derived from the whole series. 32 

(4)  Can we create a better structure for the collective and include classifiers built on further 33 
domains? Flat-COTE only contains classifiers from three of the five groups in Section2, 

34 
and the current structure within Flat-COTE makes it di@cult to fairly add new approaches. 

36 We address these questions over the remainder of this paper through firstly comparing Flat-COTE 
37 to two deep learning approaches. After demonstrating that Flat-COTE is more accurate, we define 
38 a new collective: HIVE-COTE. 
39 

40 4 TSC DATASETS 
41 4.1 UCR/UEA Time Series Dataset Repository 
42 

We  use all of the 85 datasets currently in the UCR/UEA repository for the main experimental  
43 

evaluation. These problems have been commonly adopted by TSC researchers and the datasets are 
44 

split into pre-defined train/test partitions to allow reproducible research. However, always using 
45 

the same splits risks overfitting on a single sample. As we are focused on the relative performance 
46 

of classifiers, we adopt the same methodology as (Bagnall et al. 2016): we resample each dataset 
47 

100 times and report the average accuracies over 100 folds for a dataset. We  seed the resample so 

12 



 

 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 Fig. 3. A graphical representation of Flat-COTE. The classifiers from the four domains (time/whole series, 
13 shapelet, autocorrelation, power spectrum) are combined in a simple, flat structure. Each classifier is a module, 
14 and each module has a single weighted vote (35 classifiers/modules in total). Weighted votes are pooled 
15 together to select the class with the highest weight, which is subsequently used as the predicted class value 
16 by Flat-COTE. 
17 

18 

19 that experiments can be reproduced exactly. We also introduce three new case studies and make 
20 the data freely available to other researchers. 
21 

22 4.2 Non-intrusive Detection of Ethanol Level in Alcohol 
23 Up to 25% of licensed premises in some parts of the UK have been found to have counterfeit alcohol 
24 for sale. Brown-Forman, the company that makes Jack DanielâĂŹs, estimates that around 30% 
25 of all alcohol in China is fake. This is a health risk to the consumer as illegally produced spirits 
26 may contain contaminants such as methanol, and an economic risk due to the avoidance of taxes. 
27 Forgeries can sometimes be detected through external appearance such as poor labelling, but 
28 currently there is no way to conclusively tell whether spirits are forged without opening the bottle. 
29 However, the alcohol level of genuine spirits is tightly controlled and must equal the level stated on 
30 the bottle, but forgeries generally do not have this level of quality control. This means one way of 
31 detecting forgeries is by measuring the level of alcohol. Currently, this can only be done by taking 
32 a sample which is not feasible for widespread screening. We  are investigating non-intrusive  ways 
33 of testing the alcohol level using spectroscopy. We have conducted experiments using 20 different 
34 bottle types and four levels of alcohol: 35%, 38%, 40%, and 45%. Each series is a spectrograph of 1751 
35 observations from bottles from 28 different bottle brands of whisky. Four resamples were taken 
36 from each bottle. To avoid experimental bias, we evaluate classifiers using a leave-one-bottle-out 
37 cross-validation. 
38 

39 4.3 Detecting the Occurrence of an Epileptic Fit through Motion Detection 
40 

(Villar et al. 2016) investigate whether an epileptic fit can be identified using accelerometer data 
41 

attached to the wrist. They used six participants to complete ten repetitions of four different tasks: 
42 

walking; running; sawing; and mimicking epileptic seizures. The mimicked seizures were trained 
43 

and controlled following a protocol defined by a medical expert. Each patient wore a tri-axial 
44 

accelerometer on the dominant wrist. Three acceleration components were recorded at 16 Hz. The 
45 

duration of the experiments varied from 13 seconds to just over 4 minutes. We have formatted 
46 

their data into an equal length time series classification problem. We sample a random segment 
47 

of 13 seconds from the x-dimension of each series (length 208). We evaluate classifiers using a 
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24 
Fig. 4. Examples from the Ethanol Level problem. Part (a) shows there is liNle diKerence between the average 

25 
profiles of each class, and (b) demonstrates the greatest variation between example series of diKerent classes 

26 
seems to be in the middle of the series. Expert knowledge suggests that discriminartoy features will be in a 

27 
band towards the end of the series however. Part (c) expands the interval from (a) and shows there is a clear 

28 
diKerence beween the average class profiles when focusing only on this specific part of the series. 

29 
30 

leave-one-person-out cross-validation, so that a repetition from a single person cannot be in both 
31 

training and testing sets. 

33 
4.4 Vowel Classification from Raw Audio 

34 
The GRID audiovisual sentence corpus (Cooke et al. 2006) is a large multi-speaker collection of 35 
high-quality audio and video recordings of sentences by 34 speakers. Each sentence consists of 36 
six words, where the term at each position is taken from predefined groups: command, colour, 37 
preposition, letter, digit, and adverb (as shown in Table1). For example, a valid sentence could 38 
be ‘place green at J 4 soon’. The groups labelled with an asterisk in Table1are keywords; each 39 
speaker recorded every possible combination of colours, letters, and digits. The remaining positions 40 
included random selections from the other word groups to create variation between speakers using 41 
the same set of keywords. This resulted in in 1,000 sentences per speaker (w was not recorded in 42 
the GRID corpus as it is the only multisyllabic English alphabetic character). 43 

We create a TSC problem to identify which vowel was spoken from raw speech data. We used 44 
a single speaker (speaker 10 from GRID) and crop sentences to a window of 280 milliseconds 

45 
(equivalent to 7 frames) centred on the 4t h term of the sentence, retaining cases only where the 46 
spoken letter was a vowel (5 class values). The audio is sampled at 50kHz and the constraint in GRID 

47 
that all combinations of keywords must be recorded by each speaker guarantees that there will 
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15 Fig. 5. Example series of each class from a single participant in the Epilepsy problem. 
16 

17 
Table 1. The sentence structure in the GRID corpus (adapted from (Cooke et al. 2006)). Keywords are in italic 

18 
font and identified by (*). 
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21 

22 

23 

24 

25 

26 

27 
be 40 utterances of each vowel by speaker 10 (as there are 4 colours and 10 digits). We randomise 

28 
and stratify the data, splitting 50% into training data and 50% into a test set. Unlike Epilepsy and 

29 
Ethanol, we are free to perform stratified resamples of the train and test partitions of the vowel 

30 
problem without introducing bias because we use a single speaker. 

31 
We use a fixed window when creating the problem primarily to ensure all series are the same 

32 
length (as per the UCR/UEA datasets), but this also allows us to introduce a degree of  complexity 

33 
into the problem. Utterances of the same vowel by the same speaker will include natural variation 

34 
in length, as will the pauses before and after an utterance. Using a fixed window means that a case 

35 
may or may not include the end of the leading preposition at the start of a series, or the start of 

36 
the following digit at the end (or both). Additionally, using the full raw sound sampled at 50kHz 

37 
over 280ms would create series with 14,000 attributes. Whilst this length is not infeasible, it is 

38 
undesirable for the purpose of determining the relative performance of multiple classifiers on the 

39 
problem, especially if we perform repeated resamples. Therefore, we downsample the data from 

40 
50kHz to 5kHz by retaining every 10t h  reading. This introduces additional complexity as we lose 

41 
information provided by the higher frequencies. 

42 

43 5 THE HETEROGENEOUS ENSEMBLE OF STANDARD CLASSIFICATION 
44 ALGORITHMS (HESCA) 
45 

Flat-COTE is an ensemble approach containing constituent classifiers built on representations 
46 

of a problem in the time, shapelet, and spectral domains. This is the key principle of Flat-COTE; 
47 

by determining the domain(s) where discriminatory features are more easily detected a priori 
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16 Fig. 6. An example series of each vowel afler downsampling the raw data by a factor of 10 
17 
18 

in training, Flat-COTE can weight the contribution of its internal learners when producing test 
19 

predictions. However, simply building models on various representations and favouring those in the 20 
correct domain is not enough if the initial classifiers are poor. Additionally, a further consideration 21 
is the quantity of classifiers built in each domain; Flat-COTE contains 11 time domain, 8  shapelet 22 
domain, and 16 spectral domain classifiers. While the empirical results of Flat-COTE demonstrate 23 
that the current configuration is effective, there is a clear imbalance between representations within 24 
the collective. It is unclear how Flat-COTE would be affected by including or removing constituent 25 
classifiers in any of the four domains, or by adding classifiers built in additional domains. 26 

To mitigate these issues, it would be desirable to design a new collective using a meta-ensemble 27 
structure to encapsulate classifiers built on different representations into modules. Rather than 28 
contributing d individually weighted votes for a representation with d individual classifiers (as 29 
in Flat-COTE), the new collective would combine votes at a module level and include a single 30 
weighted vote for each module/representation. The rationale of why this is desirable is two-fold. 31 
First, as discussed in Section2.6, the effectiveness of ensemble approaches for classification is well 32 
documented in the literature. Second, by encapsulating classifiers for each domain into modules, 33 
any number of classifiers can be included within a module/representation without concern of 34 
causing an imbalance in the collective. 35 

We can simply reuse the Elastic Ensemble (EE) (Lines and Bagnall2015) to encapsulate classifiers 36 
for whole series, but the solution is unclear for generated feature spaces (for example, shapelets). 37 
In addition to maximising accuracy, we wish to also obtain accurate estimates of test accuracy for 38 
modules to allow correct weighting within the collective. Subsequently, our choice of classifier is 39 
infiuenced by three factors: maximising accuracy, minimising error when estimating test accuracy, 40 
and minimising the variance of test estimates over multiple datasets. A tremendous amount  of 41 
research has focused on ensemble design and techniques for diversifying identical base  classifiers 42 
to inject diversity while maintaining accuracy. We take advantage of some of these advances, but 43 
an alternative means of increasing diversity is to use a pool of different base learners rather than 44 
diversifying a single base classifier. Transforming TSC problems into generated feature spaces 45 
creates standard classification problems, which allows us to leverage the plethora of classification 46 
algorithms that have been proposed in the literature. Given the abundance of algorithms at our 

47 
disposal, using different algorithms within an ensemble seems to be the simplest way to inject 
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1 diversity but the use of heterogeneous ensembles is often ignored. Therefore we propose the 
2 Heterogeneous Ensemble of Standard Classification Algorithms (HESCA). 
3 

4 5.1 HESCA Constituents 
5 HESCA includes eight constituent classifiers, two of which themselves are ensembles: k Nearest 
6 Neighbour; Naive Bayes; C4.5 decision tree; Support Vector Machines with linear and quadratic basis 
7 function kernels; Random Forest (with 500 trees); Rotation Forest (with 50 trees); and a  Bayesian 
8 network. These classifiers are chosen to give us a balance between probabilistic, instance-based, 
9 and tree-based classifiers. HESCA is not specific to TSC and can be employed for any classification 
10 task. 
11 A simple majority voting scheme is inappropriate for HESCA because it would not capture the 
12 relative performance of classifiers on any given dataset. Instead, each classifier is assigned a weight 
13 according to the same proportional voting scheme used in EE (as described in Algorithm1). An 
14 estimate of accuracy is obtained for each constituent by carrying out a 10-fold cross-validation 
15 experiment on the training data only, and these estimates are then used to weight internal test 
16 set predictions according to the procedure outlined in Algorithm1. All classifiers in HESCA are 
17 the standard WEKA implementations and we do not perform any explicit parameter optimisation. 
18 HESCA is designed to achieve three goals: maximise test accuracy, minimise error between 
19 training CV estimates and test accuracies, and minimise variance in the error between training CV 
20 estimates and test results over multiple datasets. To test these three objectives we use 72 classification 
21 problems from the University of California, Irvine (UCI) Machine Learning Repository4. Specifically, 
22 we use the version of the data provided by (Fernández-Delgado et al. 2014) who originally converted 
23 125 UCI datasets into real-valued problems and carried out one of the largest machine learning 
24 experimental studies to compare a range of classifiers. We have selected the 72 problems  that 
25 have at least 10 attributes because we wish to only focus on problems with a high dimensional 
26 feature space. To match their experimental procedure, for each dataset we performed 100 jackknife 
27 samples with 30% of cases used for training and 70% for testing and summarise our findings in the 
28 following section by averaging accuracies across the 100 samples. Full results and code to recreate 
29 all experiments can be found on the accompanying website for this paper. 
30 

31 HESCA Accuracies on Test Data 
32 We evaluate the test performance of HESCA by comparing results against those of each individual 
33 constituent classifier. We present the results of multiple classifiers over multiple datasets using 
34 CD diagrams, as previously introduced in Section2. However, we make a slight alteration to the 
35 method of forming cliques. Following recommendations in (Benavoli et al. 2016) and (García and 
36 Herrera2008), we have abandoned the Nemenyi post-hoc test originally used by (Demšar2006) 
37 to form cliques. Instead, we compare all classifiers with pairwise Wilcoxon signed rank tests, and 
38 form cliques using the Holm correction, which adjusts family-wise error less conservatively than a 
39 Bonferonni adjustment. It is worthwhile noting that cliques formed this way do not necessarily 
40 refiect the rank order. For example, if we have three classifiers   A, B, C   with average ranks   A > 
41 B  > C  , it is possible for A to be significantly worse than B  but not significantly worse than C  in 
42 pairwise tests. This relationship cannot easily be displayed on a CD diagram. Happily, we did not 
43 encounter this phenomena with any of the results in this paper and are able to use this new method 
44 for calculating CD diagrams with the original presentational format throughout the remainder of 
45 this paper. 
46 

47 
4The UCI Machine Learning Repository:http://archive .ics.uci.edu/ml/ 

http://archive.ics.uci.edu/ml/
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14 Fig. 7. Average ranks over 72 datasets of 8 standard classifiers and HESCA, a weighted ensemble of the other 
15 8. 
16 
17 

The results in Figure7determine that we can reject the hypothesis that there is no difference 
18 

between the classifiers. HESCA is significantly more accurate than all constituents over the 72 
19 

datasets, with the exception of rotation forest (RotF). These results make a case for using either 
20 

HESCA or rotation forest in our new collective, but it raises the question of why would we use 
21 

HESCA over just using a rotation forest? Our hypothesis is that the diversity of the different base 
22 

learners within HESCA will reduce the error between estimates made from the training data and 
23 

actual test accuracies, and also reduce the variance of this error over multiple datasets. Both are 
24 

crucial factors when weighting modules correctly in the new collective and further investigation is 
25 

necessary. 

27 
5.2 Variation Between Training Estimates and Test Accuracy 

28 
The experiments in the previous section produced 100 test set accuracies for each classifier over the 29 
72 datasets. Reusing this experimental setup allows us to also carry out a 10-fold cross-validation 30 
(CV) on the training data for each classifier and sample to obtain an estimate of the expected test 31 
accuracy a priori and compare to the actual test accuracy. Table2summarises the differences 32 
training CV and test accuracies for each classifier 9averaged over the 100 resamples of the 72 33 
datasets). 34 

A positive difference in Table2is caused by the test accuracy of a classifier being higher on 35 
average than the estimate formed on the train data. The first observation is that each of the classifiers 36 
has a positive mean difference that is significantly different to zero (when tested by both a sign 37 
test and sign rank test). This means that each classifier is underestimating test set accuracy from 38 
the training data, which we believe is due to using a relatively small 30% training split for each 39 
resample. 40 

The second point of note is the relationship between test accuracy and the error between training 41 
CV and test accuracy. The weaker classifiers in terms of accuracy (NN, C45 and SVMQ) have lower 42 
average train/test differences than most of the more accurate classifiers (RandF and RotF). The 43 
exception is HESCA, which is both accurate and has a relatively small train/test difference. More 44 
concretely, there was no significant difference in test accuracy between HESCA and rotation forest 45 
found in the previous experiment, but there is a significant difference in the mean train CV/test 46 
difference between HESCA and rotation forest (using F-Tests at 5%). This indicates that HESCA 

47 
is more consistent in its estimation of test accuracy, and suggests that within HESCA the weaker 

7.3247 

6.7662 

6.6234 

5.8312 

2.3312 

2.6234 

3.3182 

5.026 

5.1558 



 

 

 

1 Table 2. A summary of the diKerences between training and test accuracy for 9 classifiers on 100 resamples 
2 of 72 datasets. A positive value indicates that on average over all folds and datasets, the test accuracy was 
3 higher than the train accuracy. 
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17 classifiers are mitigating some of the errors made by rotation forest alone. The diversification 
18 within HESCA is is not enough to significantly increase accuracy on these problems, but it does 
19 significantly improve estimates made on training data and also reduces the variance in these 
20 estimates. Both of these are key priorities for us and justify using HESCA over rotation forest in 
21 our new collective. However, we do not wish to overstate these results as the beneficial effects 
22 are small, and there are many unanswered questions. For example, we could include additional 
23 algorithms, optimise parameters in training, etc. This is beyond the scope of this work however; 
24 our objective is to develop a robust classification scheme by balancing accurate predictions with 
25 accurate training estimates. We observe that in relation to its best components, HESCA is not less 
26 accurate, has lower average difference between train CV and test accuracies, and the variation of 
27 this difference is significantly lower. 
28 

29 5.3 HESCA for TSC 
30 

We have demonstrated the utility of HESCA using the UCI datasets, rather than the UCR/UEA 
31 

datasets, as each constituent is designed for use with standard classification problems. However, our 
32 

intention is to use HESCA within our new collective for TSC problems that have been transformed 
33 

from the time domain into generated feature spaces. To demonstrate that the strengths of HESCA 
34 

hold for transformed TSC problems, Figure8shows the critical difference diagram between HESCA 
35 

and each of its constituents over 100 resamples of the 85 UCR datasets that have been transformed 
36 

into the shapelet domain. 
37 

The results of HESCA with the shapelet-transformed problems (ST-HESCA) reinforces our 
38 

previous findings; using shapelet-transformed data, HESCA is at least as accurate as any of its 
39 

constituent parts. Further, with shapelet-transformed data, ST-HESCA is significantly more accurate 
40 

than all of its component parts on the UCR/UEA datasets. We omit a detailed discussion between 
41 

training CV and test accuracy here as it is redundant in the case where ST-HESCA significantly 
42 

outperforms all of the alternatives, but we note that same relationship between accuracies was 
43 

observed as with the UCI datasets (full results are available online from the website accompanying 
44 

this paper). 
45 

These results give a clear indication that HESCA should be used in our new collective for 
46 

shapelet-transformed problems. We could also use HESCA with problems transformed into the 
47 

spectral domain, but we believe that there is a more effective approach than using the whole series 

 Mean Diff. (%) Median Diff. (%) Std Error Train < Test 
NN 0.4997 0.1691 0.2012 52 

HESCA 0.6106 0.1354 0.2680 54 
SVMQ 0.6554 0.1704 0.2901 53 

C45 0.6967 0.2388 0.2185 54 
RotF 0.8940 0.1578 0.3208 58 
NB 1.1262 0.1055 0.5345 49 

RandF 1.1312 0.2075 0.3717 60 
BN 1.2387 0.1197 0.4971 49 

SVML 1.4758 0.1556 0.6696 48 
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12 Fig. 8. Average ranks of HESCA and its constituent classifiers over 100 resamples of the 85 UCR datasets 
13 transformed into the shapelet domain. 
14 

15 

16 to represent the data for this module. We discuss our novel spectral approach in the following 
17 section. 
18 

19 6 THE RANDOM INTERVAL SPECTRAL ENSEMBLE (RISE) 
20 

In many problem domains such as speech processing, discriminatory features are found in the 
21 

frequency domain rather than the time domain. Common approaches for solving problems such as 
22 

this involve using power spectrum or autocorrelation-based features (for example, (Bagnall and 
23 

Janacek2014;Caiado et al  . 2006)). This is represented within Flat-COTE by building 8 standard 
24 

classifiers on truncated spectral features from the power spectrum (PS) and a further 8 classifiers 
25 

on a combination of autocorrelation, partial autocorrelation, and autoregressive features (ACF). 
26 

The results in (Bagnall et al. 2015) demonstrated that transforming data from the time domain to PS 
27 

and ACF features worked well within Flat-COTE, but there are two limitations with this method. 
28 

First, the true autocorrelation function is the inverse of the power spectrum, so in many ways the 
29 

two transforms are measuring the same thing (albeit at different resolutions). This means that almost 
30 

half of the constituents in Flat-COTE are spectral-based and may be causing an imbalance within 
31 

the collective. Second, the Flat-COTE approach for spectral classifiers uses the whole series for PS 
32 

and ACF transformations. This may cause the obfuscation of embedded discriminatory features, 
33 

especially for long series where spectral features may change over time. For example, speech 
34 

processing approaches often use a 20 millisecond sliding window to generate a two dimensional 
35 

spectrograph of frequency magnitude over time. This this approach is hard to generalise to TSC 
36 

problems however as windowing massively increases the feature space and also introduces an 
37 

additional parameter, which will require a further level of cross-validation to optimise. To overcome 
38 

the increased feature space and the problem of setting the window size, we propose a new classifier: 
39 

the Random Interval Spectral Ensemble (RISE). 
40 

RISE draws on ideas from tree-based ensembles such as random forest and the TSC interval 
41 

feature classifier time series forest (TSF) (Deng et al. 2013). Like TSF, we build trees on random 
42 

intervals from the data to construct a random forest classifier. A key difference however is that TSF 
43 

uses time domain features by calculating the mean, variance, and slope of each interval, but RISE 
44 

extracts spectral features over each random interval instead. We start by selecting 500 random 
45 

intervals and calculate spectral features for each interval independently. We train a separate decision 
46 

tree classifier on each set of features, then combine trees into a forest. The resulting ensemble 
47 

classifier contains 500 base learners that are diversified through interval selection. Additionally, 
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1 the first tree in RISE is a special case that uses the whole series. The procedure for building RISE is 
2 outlined in Algorithm2. 
3 

4 Algorithm 2 BuildRISE(Training data train, number of classifiers r, minimum interval length 
5 

 minLen)  
6 

1: Let F =< F1 . . . Fr > be the trees in the forest. 7 
2: Let m be the length of series in t r ain 8 
3: whol e S er ies F e atur es = getSpectralFeatures(t r ain) 
4: F1 .buildClassifier(whol e S er ies F e atur es ) 9 
5:  for i 2 to r do 10 
6: st ar t P os = randBetween(1, m minLen 
7: end P os = randBetween(st ar t P os + minLen, m 11 
8: int er val = t r ain.removeAttributesOutsideOfRange(st ar t P os ,end P os ) 12 
9: int er val F e atur es = getSpectralFeatures(int er val ) 

10: Fi .buildClassifier(int er val F e atur es ) 
13    

14 

15 There are many options for the spectral features that we could use within RISE. We could use 
16 PS features, ACF features, or a combination of the two (more details of alternative schemes are 
17 available in (Bagnall and Janacek2014)). We hypothesise that the best classifier will be produced 
18 through combining PS and ACF features for a single classifier (for context, the initial iteration 
19 of this work in (Lines et al. 2016) used only ACF features). We test this hypothesis using the 85 
20 UCR/UEA datasets in the following experiments , but first demonstrate the intuitive strengths of 
21 RISE over current spectral methods in a motivational example using simulated data. 
22 

23 6.1 RISE vs. Current Spectral Methods 
24 We run two sets of experiments to demonstrate that RISE produces a significantly more accurate 
25 classifier than the full series spectral methods, used either independently or in conjunction. We 
26 represent the current approaches by converting TSC problems into ACF and PS features and train 
27 a classifier on each; our findings in Section5naturally lead us to select HESCA. We design our 
28 experiments to test three hypotheses: 
29 (1) RISE is not significantly less accurate than current spectral approaches when discriminatory 
30 features are located in the spectral domain over the whole series; 
31 (2) RISE is significantly more accurate than the current spectral approaches when discrimina- 
32 tory features are located in the spectral domain over specific intervals; 
33 (3) RISE is significantly more accurate than current spectral approaches on the UCR/UEA 
34 datasets. 
35 

We generate two synthetic problems to test hypotheses 1 and 2. First, we create a spectral 
36 

problem using two autoregressive models of the type described in (Bagnall and Janacek2014) to 
37 

represent classes in a binary problem where discriminatory features span the whole series. Second, 38 
we repeat this process, but embed the spectral features within a problem-dependent random interval 

39 
surrounded by white noise. The intuition is that all spectral approaches will perform well on the first 

40 
problem, but the white noise in the second problem will confound the whole series approaches and 41 
RISE will outperform competing techniques. We create both problems with 80 series of length 100 

42 
and partition 50% of the data for training. Similarly to Section5we report classification results for 43 
each classifier averaged over 100 runs, although we now generate independent data sets rather than 

44 
resample the same dataset. We  experiment with a range of spectral classifiers used in  conjunction 

45 
with HESCA: PS-HESCA, ACF-HESCA, and PSACF-HESCA. We report results over 100 runs, and 46 
also include a rotation forest and DTW 1-NN as benchmarks for comparison. The full results are 

47 
available on the supporting website and are summarised in the boxplots in Figure9. 



 

 

 
1 

2 1 

3 
0.9 

4 

5 0.8 

6 0.7 

7 
0.6 

8 

9 0.5 

10 
0.4 

11 

12 0.3 

13 

14 

15 

 

 
RotF DTW ACF PS PSACF RISE 

 
(a) 

 
 

1 
 

0.9 
 

0.8 
 

0.7 
 

0.6 
 

0.5 
 

0.4 
 

0.3 

 

 
RotF DTW ACF PS PSACF RISE 

 
(b) 

16 Fig. 9. Box plot of accuracies of six classifiers for 100 AR simulation experiments (a) and 100 AR simulation 
17 experiments embedded in noise (b). 
18 
19 

The results support our first two hypotheses for RISE. First, there was no significant difference 20 
between RISE and any of the spectral-HESCA implementations on the whole series problem. The 21 
boxplot in Figure9ademonstrates that there was little difference in performance between RISE, 22 
ACF-HESCA and PSACF-HESCA, though PS-HESCA clearly did not perform as well as the other 23 
three spectral methods. This observation informally supports our intuition that including both 24 
PS and ACF features will produce the best spectral classifier. Second, RISE was significantly more 25 
accurate than all of the spectral-HESCA approaches when discriminatory information is embedded 26 
in a random interval surrounded by noise (confirmed with rank-based pairwise tests). In fact, the 27 
boxplot in Figure9bshows that embedding the problem in noise had very little, if any, effect 28 
on the ability of RISE to detect discriminatory features as the classifier reported almost idential 29 
performance. 30 

The results for RISE are promising. Using simulated problems, it appears that RISE fulfils our 31 
desired criteria and is robust when spectral features span either the whole problem or a specific 32 
interval. However, it is easy to provide experimental support for an algorithm using only problems 33 
that are designed to play to its strengths. These initial experiments confirm our intuitions about 34 
RISE under ideal circumstances, but we also use the 100 seeded resamples of the 85 UCR/UEA 35 
datasets to run experiments with RISE and the three variants of HESCA (ACF, PS, and PSACF). The 36 
full results are available on the website and are summarised in Figure10. 37 

The results in Figure10demonstrate two points. First, RISE is significantly more accurate than 38 
HESCA with any combination of spectral features on the UCR/UEA data. This both reinforces the 39 
results in the previous experiment and confirms our third RISE hypothesis. Secondly, PSACF-HESCA 40 
significantly outperforms the other HESCA implementations. These results informally support 41 
our hypothesis that the best solution for spectral problems is to combine ACF and PS features 42 
into a single classifier, rather than just using one or the other. However, to confirm this finding is 43 
consistent within RISE, we implement variants of RISE using only ACF or PS features and also run 44 
them over the 100 resamples of the UCR/UEA datasets. We compare against the implementation of 45 
RISE from Figure10that included combined ACF and PS features. The final results are summarised 46 
in the pairwise critical difference diagram in Figure11. The results confirm that combining PS and 

47 
ACF features leads to a significantly more accurate classifier than using only ACF or PS features. 
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11 Fig. 10. A pairwise critical diKerence diagram of RISE and the full series spectral approaches over 100 
12 resamples of the 85 UCR/UEA datasets 
13 

14 

15 Further, RISE is significantly more accurate than our initial spectral approach in (Lines et al. 2016) 
16 which is equivalent to using RISE with ACF features only. 
17 

18 
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27 Fig. 11. A pairwise critical diKerence diagram to show the diKerence between implementations of RISE using 
28 all available spectral features and RISE using either ACF or PS features only. 
29 

30 

31 7 A NEW COLLECTIVE: HIVE-COTE 
32 

We introduce a new version of COTE that we call the Hierarchical Vote Collective of Transformation- 
33 

based Ensembles (HIVE-COTE). HIVE-COTE is an improved version of Flat-COTE that uses a 
34 

modular hierarchical meta-ensemble structure. Given a problem where the classifiers across all 
35 

four internal domains of Flat-COTE achieve similar training accuracies, the collective will be 
36 

biased due to an uneven number of classifiers built in each domain. HIVE-COTE overcomes this 
37 

potential design bias by modularising the elements of each group of classifiers. It allows only a 
38 

single probabilistic prediction from each domain (whole series; interval; shapelet; dictionary; and 
39 

spectral). The components of a module (ensemble of classifiers on a certain type) then becomes 
40 

an encapsulated design decision. From the top level, it does not matter if a module contains one 
41 

classifier or five hundred. The overseer simply defines how to combine module predictions into a 
42 

single overall estimate. 
43 

44 7.1 Hierarchical Voting Structure 
45 

More formally, suppose we have g modules for a problem with C classes, where  C   = c. Each 

47 module produces an estimate of the probability of the class variable y, pj y = i  for j = 1 . . . g and 

48 i = 1 . . . c. Each module has a weight wj , which is an estimate of the accuracy on unseen data 
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1 formed from the train data (found through cross-validation). The collective probability is simply 
2 the normalised weighted sum over modules, 
3 

     .g  

p(y = i) = . 
j =1 wj · pj (y = i) 

.
 

5 

6 

7 The class prediction ŷ is then just 
8 

c    
k =1 

g 
j =1 wj · pj (y = k) 

9 ŷ = arg max p y = i . 
10 i =1...g 

11 Flat-COTE treats each classifier as a single module, whereas HIVE-COTE uses each constituent 
12 ensemble as a module. This structure creates a more balanced and intuitive collective as  each 
13 module corresponds to a different base ensemble, and encapsulating domain predictions into 
14 separate modules means that the number of classifiers built in each domain will no longer be a 
15 source of bias in HIVE-COTE. 
16 

17 7.2 HIVE-COTE Modules 

18 HIVE-COTE contains five modules: the Elastic Ensemble for whole series similarity, HESCA trained 
19 with shapelet-transformed problems, two modules from other published research for interval and 
20 dictionary-based similarity, and our new spectral ensemble, RISE. 
21 

7.2.1 Elastic Ensemble (EE). EE, proposed by (Lines and Bagnall2015), combines 1-nearest neigh- 
22 

bour (1-NN) classifiers using various whole-series measures. The majority of research emphasis in 
23 

TSC has been placed on defining similarity measures to couple with 1-NN classifiers. Given the wide 
24 

choice in measures that could be used, a preliminary experiment by (Lines and Bagnall2015) showed 
25 

that there was no similarity measure that significantly outperformed all others when coupled with 
26 

1-NN classifiers. The results did however demonstrate that the classifiers made predictions in 
27 

significantly different ways. Using this finding, EE was created to utilise the diversity between 
28 

alternative elastic measures by building different 1-NN classifiers to combine into a proportional 
29 

ensemble (using the same scheme outlined earlier in Algorithm1), which was significantly more 
30 

accurate than any of its constituent parts. All parameter settings for the measures are set through 
31 

cross-validation on the training data. 
32 

33 7.2.2 Shapelet Transformed data with HESCA (ST-HESCA). The shapelet transform (ST) described 
34 by (Hills et al. 2014) separates shapelet discovery from the classifier by finding the top k shapelets 
35 from a single run, rather than through recursively searching to build a decision tree classifier as in 
36 the original shapelet implementation (Ye and Keogh2011). Data are transformed with ST by using 
37 extracted shapelets, where attributes in a new instance are the distances from an input series to 
38 each shapelet. We use the most recent version of ST (Bostrom and Bagnall2015) that balances the 
39 number of shapelets per class and evaluates each shapelet on how well it discriminates a single class. 
40 It is possible to use any standard classification algorithm with problems after being processed by 
41 ST; given our findings in Section5, we build HESCA with shapelet-transformed data (ST-HESCA). 
42 

7.2.3 Bag-of-SFA-Symbols (BOSS) Ensemble. The core process for dictionary methods involves 43 
forming words by passing a sliding window of length w over each series, approximating each 44 
window to produce l values, then discretising these values by assigning each a symbol from an 45 
alphabet of size α . BOSS, introduced by (Schäfer2015), uses a truncated discrete Fourier transform 46 
to compress each window, then discretises through multiple coe@cient binning. The resulting 

47 
distribution of words forms the basis for 1-NN classification and uses a bespoke non-symmetrical 
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1 distance function. BOSS also includes a parameter that determines whether the subseries are 
2 normalised or not. During the parameter search of window sizes, the BOSS ensemble retains all 
3 classifiers with training accuracy within 92% of the best. New instances are classified by a majority 
4 vote. 
5 

6  7.2.4 Time Series Forest (TSF). (Deng et al. 2013) proposed TSF, which overcomes the problem of 
the huge interval feature space by employing a random forest approach with summary statistics of 

7 
each interval as features. Training a single tree involves selecting 

√
m random intervals, generating 

the mean, standard deviation, and slope of the random intervals for every series. Trees are trained 
9 

on the resulting 3
√

m features and classification is by majority vote. 
11 

7.2.5  Random Interval Spectral Ensemble (RISE). The final module we include in HIVE-COTE is 
12 

our new spectral ensemble, RISE. We use the combination of ACF and PS features as described in 
13 

Section6. 
14 

15 

16 
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25 
Fig. 12. A graphical representation of HIVE-COTE. The classifiers from the five constituent ensembles are 

26 
combined using a probabilistic hierarchy. The key diKerence to Flat-COTE is that classifiers in each domain 

27 
form a single module in HIVE-COTE, encapsulating predictions over each domain to create a more balanced 

28 
structure. 

29 

30 

31 

32 7.3 Default Parameters 
33 To remain consistent with the literature, we use the parameter setting configurations described in 
34 (Bagnall et al. 2016) for the modules in HIVE-COTE, with the exception of RISE which is new to 
35 this work. For simplicity, we set RISE to use the same number of intervals/trees as TSF. The list of 
36 modules and associated parameters are summarised in Table3. 
37 

38 

39 Table 3. The default parameters used to build HIVE-COTE modules. EE and BOSS use leave-one-out cross- 
40 validation (LOOCV), ST-HESCA uses 10-fold CV, and RISE and TSF do not require any parameters to be set 
41 in training. 
42 

43 

44 

45 

46 

47 

HIVE-COTE 
Elastic 

Ensemble 
Shapelet 
Ensemble 

In: Predicted class 

probabilities 

Out: CV-weighted 

probabilities 

In: Predicted class 

probabilities 

Out: CV-weighted 

probabilities 

Weighted probabilities pooled. Majority class chosen 

In: Predicted class 

probabilities 

Out: CV-weighted 

probabilities 

In: Predicted class 

probabilities 

Out: CV-weighted 

probabilities 

In: Predicted class 

probabilities 

Out: CV-weighted 

probabilities 

Random Interval 
Spectral Ensemble 

Time Series 
Forest 

BOSS Ensemble 

Classifier Parameters Training Folds 
EE 
ST-HESCA 
RISE 
TSF 
BOSS 

100 options for each constituent (full list available in (Lines and Bagnall2015)) LOOCV 
ST: l = from 3 to m; HESCA: default params as in Section510-fold 
r = 500, random interval lengths from 16 to m N/A 
r = 500 √  N/A 
α = 4, w from 10 to m with min(200, m), l ∈  8, 10, 12, 14, 16 LOOCV 

 



 

 

30 

38 

 

1 7.4 Time Complexity 
2 The time complexity of HIVE-COTE is no different to Flat-COTE. The complexity of HIVE-COTE 
3 is bounded by ST-HESCA due to the shapelet extraction procedure, and Flat-COTE also contains 
4 classifiers built on shapelet-transformed data. Therefore both collectives have the same time 
5 complexity: O(n2m4). 

7 Table 4. The training time complexities for the constituent modules in HIVE-COTE. 
8 

9 

10 

11 

12 

13 
14 

There are two main criteria for comparing classification algorithms: test accuracy and  time 
15 

complexity. In this work we focus specifically on comparing classifiers based on test accuracy. It is 16 
certainly of interest to reduce the time complexity without reducing the accuracy of strong TSC 

17 
algorithms, but there is little merit in accelerating poor models. 

18 
The objective of HIVE-COTE is to be significantly more accurate than Flat-COTE. It is trivial 19 

to make an algorithm faster if it is significantly less accurate (e.g. random guessing), but it is not 
20 

trivial to make a significantly more accurate algorithm regardless of runtime. While runtime is 21 
an important (and sometimes crucial) factor for certain applications, this is not the motivation 

22 
behind HIVE-COTE and is of secondary interest to us in this work. Our hypothesis is that HIVE- 

23 
COTE will fulfil the first criteria and be significantly more accurate than Flat-COTE, and there will 24 
also be no significant difference between runtimes. Additionally, we have found through internal 

25 
investigations that we can speed up both HESCA and the shapelet transform by at least an order of 26 
magnitude with no significant difference in accuracy through using simple heuristics. Therefore 

27 
direct time comparisons between algorithms would also be misleading at this point. We defer the 28 
discussion of speedups to HIVE-COTE for future work, and focus specifically on test classification 

29 
accuracy in the following experiments. 

31 8 RESULTS 
32 

We report our experiments in four parts. First, we investigate how a benchmark CNN and a recently 
33 

proposed TSC-specific CNN compare with the current state of the art for TSC, Flat-COTE. Second, 34 
we compare our new probabilistic hierarchical meta-ensemble, HIVE-COTE, to Flat-COTE and the 

35 
other leading TSC algorithms. Third, we analyse the performance of HIVE-COTE and its constituent 36 
parts under various conditions using simulated data. Finally, we include in-depth results of three 

37 
new case study problems using HIVE, RISE, and HESCA. 

39 
8.1 Flat-COTE and Deep Learning 

40 
The CNN and MCNN used by (Cui et al. 2016) were evaluated on 44 of the 85 UCR/UEA datasets. 41 
However, the CNN was used only as a comparison to MCNN and the actual results of the CNN 42 
were not published, while the published MCNN results were only recorded on roughly half of the 43 
UCR/UEA datasets. We wish to run our own standard CNN over the 85 problems as a benchmark 44 
to understand how the standard approach compares to other algorithms before comparing MCNN 45 
to the state of the art. We create CNNs in the Theano framework (Theano Development Team 46 
2016) using stochastic gradient descent with momentum and one convolutional layer, followed  by 

47 
a max-pooling layer and three fully connected layers. Each convolutional/fully connected layer 

6 

Classifier Train Time Parameters 
EE 
ST-HESCA 
RISE 
TSF 
BOSS 

O (n2m2 ) 
O (n2m4 ) 
O (knm2 ) k : number of intervals 
O (r mn log n) r : number of trees 
O (nm(n − w ))  w : window length 
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1 contains 256 filters/units. The hyper-parameters (and the range of values we consider) that must 
2 be set are: the learning rate (0.1, 0.01, 0.001), filter size (0.05, 0.1, 0.2), pooling size (2, 3, 5), and 
3 the number of training epochs (50, 100, 200). We select parameters through minimising error in 
4 training, favouring smaller epochs in the event of ties to avoid overfitting. Figure13summarises the 
5 results of the CNN over the 85 datasets to the current state of the art, Flat-COTE, and the common 
6 benchmark of DTW 1-NN with warping set in training. 
7 

8 

9 3 2 1 
10 

11 

12 
DTW CV 1-NN 

13 

14 

15 

Flat-COTE 

CNN 

16 Fig. 13. Flat-COTE compared to DTW 1-NN and CNN on 85 UCR/UEA datasets. 

17 

18 Flat-COTE significantly outperforms the CNN on the 85 UCR/UEA datasets, while the average 
19 rank of CNN is not significantly different to DTW. This demonstrates that the standard CNN is at 
20 least competitive with the DTW benchmark, but cannot match Flat-COTE. However, the results 
21 reported by (Cui et al. 2016) stated that their MCNN significantly outperformed a standard CNN 
22 over 44 UCR/UEA datasets. We compare the published MCNN results to our CNN and also find a 
23 significant difference, so it is worthwhile also comparing MCNN to Flat-COTE. Over the 44 datasets 
24 that they report result for, Flat-COTE wins on 28 datasets, MCNN on 14, and they tie on 2. The 

25 difference is significant according to both a binomial test and a Wilcoxon signed-rank test. 
26 

27 
1
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39 
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43 MCNN Test Acc 

44 

45 Fig. 14. A scaNer plot of the test accuracies over the 44 UCR datasets used by in (Cui et al. 2016) (two Flat- 
46 COTE wins omiNed for clarity). Flat-COTE wins on 28, MCNN wins on 14, and they tie on 2. The diKerence is 

significant. The average test accuracy of Flat-COTE over these problems is 88.6%, and MCNN is 86.5% (+2.1% 

47 in favour of Flat-COTE). 
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1 Though Flat-COTE is significantly more accurate than MCNN, comparing MCNN to DTW 1-NN 
2 over the 44 datasets finds a significant difference in favour of MCNN. This is still an impressive 
3 feat, as only a handful of algorithms evaluated by (Bagnall et al. 2016) actually outperformed DTW. 
4 It demonstrates promise, and warrants further investigation of deep learning applications to TSC. 
5 However, the current state of the art is confirmed to be Flat-COTE and our next objective is to 
6 evaluate whether HIVE-COTE is a significant improvement. 
7 

8 8.2 HIVE-COTE on UCR/UEA Datasets 
9 Section2included a CD diagram summarising the relative performance of the top classifiers in the 
10 experimental evaluation by (Bagnall et al. 2016). These results were generated using 100 resamples 
11 of the 85 UCR/UEA datasets, where resamples were seeded to allow researchers to recreate the 
12 experimental procedure exactly. This allows us to run HIVE-COTE under the same conditions and 
13 update the evaluation to include our new collective. Table5and Table6report the 100-fold average 
14 classification accuracies for HIVE-COTE and the classifiers in (Bagnall et al. 2016) that significantly 
15 outperformed Rotation Forest and DTW 1-NN. 
16 

17 

18 

19 

20 9 8 7 6 5 4 3 2 1 
21 
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26 TSBF 
27 TSF 
28 

DTW−F 
29 
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31 
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Flat−COTE ST 

BOSS 

EE 

32 
Fig. 15. The top TSC algorithms from (Bagnall et al. 2016) compared to HIVE-COTE using a pairwise CD 
diagram. 

33 
34 

HIVE-COTE is significantly more accurate than all alternatives, including Flat-COTE. Against all 
35 

algorithms, HIVE-COTE wins on 45 out of the 85 datasets and is ranked within the top 3 classifiers 36 
on 83 problems. This underlines the utility of transformation-based ensembles in general, but  also 

37 
demonstrates the effectiveness of the new hierarchical structure given the relative performance 38 
against Flat-COTE. We  could not include MCNN in the full comparison as results were  only 

39 
published for a single train/test split for 44 of the 85 datasets. However, we can compare MCNN to 

40 
HIVE-COTE on the default train/test splits for the 44 datasets. The result of this pairwise comparison 41 
is that HIVE-COTE wins on 30, MCNN on 11, and they tie on 3. The difference is significant and 

42 
shown in further detail in Figure16. 

44 
8.3 HIVE-COTE on Simulated Datasets 

45 
In Section2we assigned TSC algorithms to five groups: whole series/elastic; interval; shapelet; 46 
dictionary; and spectral. We have designed HIVE-COTE to include a module to represent each 

47 
group, and we posit that each will be optimal for data with different discriminatory characteristics. 

6.8941 

6.4765 

6.3 

6.2647 
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4.6529 
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1 Table 5. Test Results Part I: The average accuracy of the best classifiers from (Bagnall et al. 2016) and HIVE- 
2 COTE over 100 resamples of the UCR datasets (continued in Table6). The classifiers included are: ST-HESCA 
3 (Shapelet Transform data with HESCA), BOSS (Bag of SFA Features), DTWF (DTW Features), TSF (Time 
4 Series Forest), TSBF (Time Series Bag-of-features), LPS (Learned PaNern Similarity), EE (Elastic Ensemble), Flat-

COTE, and HIVE-COTE. The best result for each dataset is highlighted in bold. HIVE-COTE wins on 
5 45/85 datasets overall, and beats Flat-COTE on 69/85 problems in a head-to-head comparison. 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 
Furthermore, we hypothesise that HIVE-COTE will be as accurate, or at least not significantly worse, 

42 
than the best approach for each data type. This is di@cult to evaluate with real data as there are 

43 
many possible confounding factors and biases towards the type of data that can be readily collected. 

44 
With this in mind we have created data simulators for each type of problem to test these hypotheses. 

45 
Briefiy, each simulator places one or more of the shapes shown in Figure1ainto standard normal 

46 
noise. The location, size, frequency, and/or type of shape defines the simulator. Examples generated 

47 
by each simulator with very low noise were given as examples series in Section2. Examples of 

Dataset ST- 
HESCA BOSS DTW_F TSF TSBF LPS EE Flat- 

COTE 
Hive- 
COTE 

Adiac 76.84 
85.11 
73.57 
87.45 
92.70 
90.18 
98.56 
68.21 
91.83 
99.50 
78.46 
77.71 
76.22 
79.78 
91.12 
81.94 
82.93 
69.04 
73.73 
84.02 
94.34 
95.50 
89.54 
96.76 
79.40 
90.93 
71.30 
97.42 
96.54 
91.51 
99.87 
80.84 
92.39 
51.19 
65.34 
39.30 
61.65 
95.31 
93.25 
65.89 
72.44 
97.23 
96.57 

74.94 
87.52 
61.50 
94.85 
98.4 
85.50 
99.81 
65.96 
90.04 
98.86 
80.23 
76.36 
74.93 
77.57 
93.94 
81.41 
81.46 
67.30 
74.59 
89.05 
94.05 
98.33 
79.95 
97.42 
99.56 
95.06 
70.22 
96.87 
91.95 
91.10 
99.41 
83.60 
90.28 
45.90 
60.53 
50.27 
51.03 
86.60 
83.66 
81.00 
66.56 
94.86 
98.03 

60.50 
77.58 
54.60 
85.25 
86.50 
85.13 
97.87 
65.76 
71.42 
97.29 
65.90 
76.92 
75.63 
78.52 
94.22 
75.96 
79.62 
65.83 
74.75 
81.85 
93.96 
90.71 
87.43 
96.27 
90.92 
88.91 
74.84 
93.11 
88.41 
84.30 
96.36 
79.46 
91.53 
46.36 
60.92 
38.22 
60.21 
94.79 
82.30 
71.02 
67.12 
92.88 
98.33 

70.72 
78.94 
64.77 
84.25 
83.85 
75.83 
95.77 
71.88 
97.37 
98.86 
76.81 
69.14 
68.79 
70.67 
94.13 
81.29 
80.95 
68.57 
74.67 
86.82 
94.39 
92.16 
80.42 
94.93 
89.06 
89.68 
72.80 
80.72 
81.56 
79.01 
96.17 
79.50 
90.86 
46.68 
60.63 
37.85 
61.30 
95.76 
64.44 
75.67 
72.26 
93.65 
97.83 

72.68 
80.09 
55.43 
79.85 
90.20 
79.55 
97.73 
68.34 
71.64 
98.18 
76.54 
73.06 
72.83 
73.76 
89.03 
81.17 
81.56 
69.04 
74.65 
84.68 
93.78 
84.88 
80.85 
94.18 
86.18 
84.93 
74.44 
91.26 
83.10 
75.06 
96.45 
71.07 
87.95 
46.31 
59.05 
37.71 
61.60 
92.62 
55.06 
75.98 
68.03 
95.11 
98.25 

76.50 
80.63 
51.97 
89.25 
85.40 
83.58 
98.45 
64.16 
74.28 
95.00 
72.60 
69.60 
70.62 
71.36 
91.45 
74.15 
76.74 
61.83 
66.78 
80.75 
91.73 
83.95 
85.32 
96.15 
88.89 
91.00 
77.62 
91.17 
86.95 
85.23 
97.19 
68.50 
86.75 
41.52 
54.86 
44.87 
51.91 
91.40 
67.97 
75.66 
63.08 
90.82 
96.80 

66.50 
85.97 
53.20 
82.25 
84.80 
79.95 
99.30 
65.86 
94.59 
98.93 
73.16 
80.11 
79.43 
80.36 
94.6 
76.80 
76.83 
65.41 
73.50 
88.10 
93.86 
84.72 
83.07 
97.57 
87.93 
94.83 
82.07 
91.34 
75.06 
75.69 
97.42 
76.34 
88.01 
45.06 
56.63 
47.64 
58.10 
95.08 
81.58 
83.52 
76.34 
96.07 
97.85 

80.98 
87.68 
76.4 
92.10 
94.10 
89.90 
99.80 
73.56 
98.27 
99.96 
76.97 
81.40 
81.49 
82.69 
92.48 
82.12 
80.46 
69.32 
74.68 
87.29 
94.61 
98.62 
88.28 
99.00 
85.03 
96.66 
80.12 
96.22 
95.46 
92.86 
99.19 
80.52 
89.39 
51.69 
63.19 
52.65 
63.89 
97.03 
90.00 
78.48 
79.95 
97.42 
98.08 

81.54 
88.77 
72.27 
95.9 
95.05 
92.55 
99.94 
72.51 
98.8 
99.82 
81.94 
83.04 
83.7 

84.77 
94.19 
82.63 
82.49 
69.82 
74.70 
88.19 
94.73 
98.95 
88.97 
99.63 
94.95 
98.36 
80.68 
97.62 
95.97 
92.72 
99.67 
84.08 
91.20 
53.03 
63.39 
52.59 
63.54 
96.78 
92.27 
79.70 
81.11 
97.55 
98.72 

ArrowHead 
Beef 

BeetleFly 
BirdChicken 

Car 
CBF 

ChlorineConcentration 
CinCECGtorso 

Coffee 
Computers 

CricketX 
CricketY 
CricketZ 

DiatomSizeReduction 
D.PhalanxAgeGroup 

D.PhalanxCorrect 
D.PhalanxTW 

Earthquakes 
ECG200 

ECG5000 
ECGFiveDays 

ElectricDevices 
FaceAll 

FaceFour 
FacesUCR 

FiftyWords 
Fish 

FordA 
FordB 

GunPoint 
Ham 

HandOutlines 
Haptics 
Herring 

InlineSkate 
InsectWingbeatSound 

ItalyPowerDemand 
LargeKitchenApps 

Lightning2 
Lightning7 

Mallat 
Meat 

Average Accuracy 
Average Rank 

83.80 
4.16 

83.35 
4.66 

80.54 
6.26 

79.58 
6.30 

79.87 
6.48 

79.51 
6.89 

81.19 
5.80 

85.79 
2.84 

86.92 
1.61 

 



 

 

 

1 Table 6. Test Results Part II (continued from Table5) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 

the actual series that we have used in experiments are shown in Figure17alongside low-noise 
36 

comparisons. 37 
To simulate whole series elastic data, a single shape defines the class, and the shape is stretched 

38 
between 10% and 100% of the total length for each series. For interval data, a single shape also 39 
defines the class, but we place several much shorter versions at fixed locations so that there is a 

40 
high ratio of noise to shape. For shapelet data, a single short fixed-length shape defines the class, 

41 
and the shapelet is placed at a random location for every series of each class. For dictionary data, we 42 
generate series using many repetitions of two shapes in random locations, and the discriminatory 

43 
feature defining class membership is the frequency that each shape appears. Finally, for spectral 44 
problems we simulate data as described in Section6when motivating RISE. We create 200 two- 

45 
class problems with each simulator and evaluate 10 TSC algorithms over the 1000 datasets. We 46 
include a brief summary of the simulation results, and a more detailed description of the simulators, 

47 
parameter settings, and results is available in (Bagnall et al.2016). 

Dataset ST- 
HESCA BOSS DTW_F TSF TSBF LPS EE Flat- 

COTE 
HIVE- 
COTE 

MedicalImages 69.11 
69.39 
81.51 
57.93 
88.23 
94.68 
95.39 
88.07 
93.41 
79.45 
32.91 
99.96 
84.09 
88.09 
80.28 
76.08 
67.61 
93.36 
85.42 
80.25 
88.76 
92.44 
97.74 
96.84 
93.85 
86.16 
98.69 
95.40 
94.72 
99.99 
98.44 
95.17 
94.21 
80.59 
73.70 
74.68 
99.98 
92.61 
58.24 
71.95 
77.87 
82.25 

71.46 
66.60 
80.82 
53.74 
84.60 
84.09 
90.36 
87.00 
96.74 
82.08 
25.62 
99.79 
81.90 
86.74 
77.28 
78.46 
58.60 
100 

90.88 
75.02 
89.74 
88.77 
97.76 
97.03 
91.77 
96.12 
96.79 
92.88 
95.97 
99.99 
98.45 
99.12 
94.45 
75.32 
66.12 
69.52 
99.90 
91.17 
65.88 
73.49 
80.97 
90.99 

70.11 
58.09 
79.75 
51.94 
89.08 
87.67 
89.79 
86.37 
80.90 
79.29 
21.97 
99.58 
82.37 
82.86 
77.42 
65.63 
49.90 
88.78 
79.59 
75.29 
88.38 
85.86 
95.96 
96.98 
88.55 
93.00 
98.58 
92.20 
90.38 
99.74 
95.75 
99.95 
96.29 
80.63 
71.66 
73.65 
99.62 
89.20 
67.42 
67.34 
73.00 
86.35 

75.74 
67.65 
79.40 
57.70 
87.44 
88.05 
91.44 
88.30 
63.66 
80.43 
21.13 
99.41 
84.56 
84.74 
80.84 
61.54 
57.28 
50.99 
80.01 
81.26 
84.49 
85.60 
96.87 
96.27 
89.20 
88.76 
99.03 
66.10 
78.24 
99.80 
84.22 
99.05 
96.19 
80.64 
72.74 
74.08 
99.65 
88.06 
64.35 
62.79 
68.51 
86.70 

70.07 
67.25 
80.04 
56.82 
88.64 
84.24 
86.21 
86.43 
67.81 
82.54 
27.79 
99.32 
84.15 
86.12 
79.82 
63.84 
53.79 
91.27 
85.35 
67.37 
83.93 
82.54 
97.77 
96.81 
90.78 
94.43 
98.65 
85.82 
88.58 
98.14 
90.96 
97.42 
94.37 
83.44 
74.57 
77.60 
99.61 
87.93 
66.90 
66.84 
75.49 
83.45 

70.99 
59.67 
77.02 
50.32 
91.65 
80.69 
82.59 
89.17 
76.35 
78.96 
24.49 
99.95 
79.97 
85.05 
72.22 
67.55 
50.59 
87.42 
88.45 
72.37 
84.18 
85.10 
96.83 
96.35 
92.56 
95.98 
97.16 
84.12 
92.64 
96.65 
92.79 
96.69 
96.77 
81.87 
75.27 
76.65 
99.51 
88.43 
72.81 
64.16 
74.26 
87.37 

76.05 
60.88 
78.18 
52.51 
87.51 
84.87 
91.39 
87.90 
81.16 
78.05 
29.92 
100 

80.53 
83.89 
75.91 
67.59 
55.43 
82.73 
88.59 
70.33 
79.42 
87.01 
94.15 
95.88 
91.59 
95.74 
99.40 
78.76 
90.70 
99.60 
95.85 
100 

96.83 
80.47 
73.05 
72.63 
99.69 
88.67 
77.84 
64.44 
71.74 
88.54 

78.50 
72.23 
80.14 
58.69 
90.16 
92.92 
94.61 
90.13 
94.91 
78.28 
36.20 
100 

84.84 
87.09 
81.47 
74.23 
65.13 
96.38 
91.07 
78.78 
89.91 
95.98 
97.96 
96.31 
96.67 
95.27 
99.92 
93.37 
95.15 
99.99 
98.25 
99.98 
96.48 
83.05 
76.56 
75.95 
99.94 
90.35 
74.81 
72.51 
78.52 
89.78 

81.54 
70.49 
80.89 
57.12 
94.68 
93.17 
95.23 
89.77 
97.05 
82.12 
38.55 
100 

84.85 
87.63 
81.16 
80.1 
71.1 
99.13 
92.59 
83.71 
88.68 
94.54 
98.15 
96.98 
96.86 
96.58 
99.96 
95.5 
96.64 
100 

99.35 
99.99 
96.98 
83.84 
77.55 
77.83 
99.97 
91.20 
74.80 
73.40 
78.39 
91.7 

M.PhalanxAgeGroup 
M.PhalanxCorrect 

M.PhalanxTW 
MoteStrain 

NonInvasiveThorax1 
NonInvasiveThorax2 

OliveOil 
OSULeaf 

PhalangesCorrect 
Phoneme 

Plane 
P.PhalanxAgeGroup 

P.PhalanxCorrect 
ProximalPhalanxTW 
RefrigerationDevices 

ScreenType 
ShapeletSim 

ShapesAll 
SmallKitchenApps 
SonyAIBORobot1 
SonyAIBORobot2 

StarlightCurves 
Strawberry 

SwedishLeaf 
Symbols 

SyntheticControl 
ToeSegmentation1 
ToeSegmentation2 

Trace 
TwoLeadECG 
TwoPatterns 

UWaveGestureAll 
UWaveGestureX 
UWaveGestureY 
UWaveGestureZ 

Wafer 
Wine 

WordSynonyms 
Worms 

WormsTwoClass 
Yoga 

Average Accuracy 
Average Rank 

83.80 
4.16 

83.35 
4.66 

80.54 
6.26 

79.58 
6.30 

79.87 
6.48 

79.51 
6.89 

81.19 
5.80 

85.79 
2.84 

86.92 
1.61 
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20 Fig. 16. A comparison of the test accuracies between HIVE-COTE and MCNN over the 44 UCR datasets used 
21 by (Cui et al. 2016). HIVE-COTE wins on 30, MCNN wins on 11, and they tie on 3. The diKerence is significant. 
22 

23 

24 

25 The classifiers we use are selected to be representative of each group of algorithm outlined in 
26 Section2. Five classifiers are the individual modules from HIVE-COTE, and the remaining five 
27 are included based on the experimental results in (Bagnall et al. 2016). First, we use two standard 
28 benchmarks: Rotation Forest (Rodriguez et al. 2006) with 50 trees (RotF) and Dynamic Time Warping 
29 (Ratanamahatana and Keogh2005) with window size set through cross-validation (DTW). Next, to 
30 represent whole series techniques we use EE and HESCA. For interval-based similarity we use TSF, 
31 and shapelet-based classification we use ST-HESCA. BOSS is used for dictionary-based similarity, 
32 and our new ensemble RISE is used for classification in the spectral domain. Finally, Flat-COTE and 
33 HIVE-COTE are both included to represent combinations of techniques. Our prior belief was that a 
34 classifier from a given group would perform significantly better than all other algorithms on data 
35 that was designed for that group. Specifically, we expected EE to be best on whole series/elastic 
36 simulations, TSF on interval simulations, ST-HESCA on shapelet simulations, BOSS on dictionary 
37 simulations, and RISE on spectral simulations. The goal of HIVE-COTE and Flat-COTE is to be able 
38 to dynamically adjust to each type of discriminatory feature and perform well across all simulations. 
39 The objective of these simulations is to answer three questions: 
40 (1) Can the two COTE classifiers perform at least as well as the best in class classifier for a 
41 given problem type? 
42 (2) Is HIVE-COTE significantly more accurate than other approaches when we do not know 
43 the origin of the data? 
44 (3) Is HIVE-COTE significantly more accurate than Flat-COTE on these simulated TSC prob- 
45 lems? 
46 

We have run 200 independent trials for each simulator by generating a random data set and per- 
47 

forming a random stratified split into train and test data. Any parameter optimisation is performed 
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43 
Fig. 17. Example simulated series. The lefl column includes examples with low noise (repeated from Section2) 

44 
and the right includes series generated with standard noise; the simulation experiments use standard noise 

45 
series to increase the complexity of the problems. 

46 

47 



 

 

 

1 on the training data and we report accuracy results on the test data. The mean ranks, and the 
2 relative ordering in brackets, are shown in Table7. The entries in bold are not significantly worse 
3 than the best classifier. We use a Wilcoxon sign-rank test with α adjusted to 0.005 to compensate 
4 for multiple testing. It is worth noting that 200 is a relatively large sample size, and significance 
5 results reported with a sign-rank test are identical to those found with a sign test, a paired t-test, 
6 and a binomial test. 
7 

8 
Table 7. Results of the simulation exeriments for all classifiers. Relative ranking of classifiers on each is shown in 
brackets. Results in bold font are not significantly worse than the best classifier on that simulated problem 

9 
type. 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 
23 

Our first observation is that HIVE-COTE is either the best or not significantly worse than the best 24 
on three of simulations (Elastic, Shapelet and Dictionary). The two cases where it is significantly 25 
worst than the best are interval and spectral simulators. These are best approached with HESCA 26 
and RISE, but HIVE-COTE is the second best for each. This is broadly in line with our expectations, 27 
but there are some unexpected features in these results. We summarise these below and address 28 
these findings in more detail in (Bagnall et al.2016). 29 

For elastic simulators, there is no significant difference between BOSS, DTW, TSF, RISE, and EE. 30 
When we ensemble with Flat-COTE (which includes constituents from ST-HESCA and spectral 31 
features) we get a significantly more accurate classifier, but HIVE-COTE (which also includes TSF 32 
and BOSS) is significantly more accurate than Flat-COTE. This implies that the accuracies of the 33 
constituents is to some degree inversely correlated, and that HIVE-COTE captures this diversity 34 
to find a better classifier overall. It contradicts our prior beliefs and was initially surprising. On 35 
refiection, we believe that this is caused by two confounding factors in the data: warping of the 36 
shape and random noise. DTW and EE can compensate for warping but are confounded by noise. 37 
BOSS, RISE and TSF all involve some form of averaging and smoothing and are thus better at 38 
coping with random noise. Our conclusion is that is dangerous to put too much credence on prior 39 
beliefs as to the best approach for a problem and that HIVE-COTE can to some degree remove the 40 
need for this possible source of bias. 41 

The interval simulator results are also surprising. Our expectation that TSF and RISE would be 42 
the best was not born out by the results. The best classifier was in fact the ensemble of standard 43 
classifiers, HESCA. The poor performance of TSF and RISE is likely caused by using intervals that 44 
are too short. The relatively good performance of ST-HESCA is an artefact of the fact that each 45 
class only uses a single shapelet over all intervals. This simulator could be better designed for 46 
future experiments, as it is essentially just simulating a standard classification problem with a large 

47 
number of redundant features. However, it does provide supporting evidence for HESCA, which is 

 Elastic Interval Shapelet Dictionary Spectral 
HIVE-COTE 2.49 (1) 

3.16 (2) 
6.50 (8) 
4.71 (4) 
4.99 (7) 
4.86 (5) 
4.65 (3) 
4.87 (6) 
8.90 (9) 
9.88 (10) 

3.06 (2) 
3.5 (3) 
3.67 (4) 
8.25 (9) 
7.59 (8) 
6.26 (7) 
5.52 (5) 

9.85 (10) 
1.65 (1) 
5.68 (6) 

2.26 (2) 
2.33 (3) 
2.13 (1) 
5.7 (5) 
4.38 (4) 
6.42 (7) 
6.39 (6) 
6.97 (8) 
9.1 (9) 

9.33 (10) 

1.9 (1) 
2.55 (3) 
4.96 (5) 
4.34 (4) 
2.54 (2) 
5.09 (6) 
7.75 (8) 
7.21 (7) 
9.14 (9) 
9.52 (10) 

2.91 (2) 
2.99 (4) 
2.98 (3) 
1.42 (1) 
8.04 (8) 
6.5 (6) 
5.78 (5) 
6.8 (7) 

8.8 (10) 
8.79 (9) 

Flat-COTE 
ST-HESCA 

RISE 
BOSS 
TSF 
EE 

DTW 
HESCA 
ROTF 

 



 

 

 

1 significantly more accurate than any of its components. We  believe that heterogeneous ensembles 
2 are an under-researched area. The interval simulation also reinforces our conclusion from  the 
3 whole series data, as HIVE-COTE effectively captures the diversity of ST and EE to improve overall. 
4 The shapelet and dictionary results broadly confirmed our prior belief. ST-HESCA and BOSS 
5 are the best approaches respectively, but HIVE-COTE is not significantly worse than either. The 
6 spectral results were a little unexpected, in that HIVE-COTE is unable to compensate for the 
7 confounding predictions of the components other than RISE. This suggests we should investigate 
8 alternative fusion strategies in cases where there is a strong bias towards a single module within 
9 the collective. 
10 Our second question was whether HIVE-COTE is better when we do not know the origin of 
11 the data. Our hypothesis is that HIVE-COTE will significantly outperform the other approaches 
12 on data of unknown origin, doing so by steering classification decisions towards the correct 
13 domains through its internal modular hierarchical structure. We can design an experiment to test 
14 this hypothesis by randomly picking one of the five simulators and measuring performance over 
15 multiple samples. However, we can simply achieve this effect by combining the 200 results from 
16 the 5 individual simulator experiments into a single set of 1000 resamples. Figure18shows the 
17 pairwise critical difference diagram of the 10 classifeirs over the 1000 samples. 
18 

19 

20 

21 10 9 8 7 6 5 4 3 2 1 
22 

23 

24 

25 
RotF 

26 
HESCA 

27 
DTW 

28 
EE 

29 
TSF 

30 

31 

 
HIVE−COTE 

Flat−COTE ST 

RISE BOSS 

32 
Fig. 18. Average ranks and cliques for ten classifiers over 1000 simulations. 

33 

34 The main claim of this paper is that HIVE-COTE is significantly more accurate than other 
35 classifiers, including Flat-COTE, for TSC problems. Figure18shows that both COTE approaches are 
36 significantly more accurate when data can be generated from any of the simulators and answers our 
37 second question in this section. Crucially however, these results also answer our third question, as 
38 HIVE-COTE is significantly more accurate than Flat-COTE on simulated problems when we do not 
39 know the source of the data. As is standard practice, we have focused exclusively on ranks for our 
40 comparative analysis. However, variation in ranks can often be represented by tiny differences in 
41 accuracy; this is not the case with these simulations. We summarise the variation in accuracy for the 
42 classifiers in a boxplot of accuracies over all 1000 experiments (Figure19). The plot demonstrates 
43 the relative stability of HIVE-COTE compares to the other algorithms. 
44 

45 8.4 Cases Studies 
46 

We have shown that HIVE-COTE represents a new state of the art for TSC on the UCR/UEA TSC 
47 

problems, and we have also demonstrated how the collective and its internal modules perform on 
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19 Fig. 19. Box plot of accuracies of ten classifiers over 1000 simulations. 
20 

21 
22 

five types of simulated problems. The following case studies demonstrate the versatility of HIVE- 23 
COTE on new problems where we have no prior experimental knowledge of the best approaches 

24 
to use. 

26 
8.4.1 Non-intrusive Detection of Ethanol Level in Alcohol. Our first use case is the ethanol level 

27 
problem described in Section4.2. Our prior beliefs were that whole series methods would be 

28 
poor at this problem, as expert knowledge suggested that discriminatory information would only 

29 
be contained within a small window at the end of the series. This would lead us to anticipate 

30 
that shapelet and interval-based approaches would perform best. We designed a leave-one-bottle- 

31 
out experiment to avoid bias, and built each of the classifiers used previously in the simulation 

32 
experiments: HIVE-COTE, Flat-COTE, EE, ST-HESCA, TSF, BOSS, RISE, and we again include 

33 
HESCA, Rotation Forest, and DTW 1NN (with window set through CV) as baseline comparisons. 

34 
The average accuracy and standard deviation across all folds for each classifier is reported in Table8. 

35 
As anticipated, whole series approaches were poor; EE and DTW were no better than random 

36 
guessing on this four class problem. The vector-based rotation forest and HESCA both  performed 

37 
very well. While this finding was initially suprising, it is perhaps to be expected given the static 

38 
nature of data in spectral problems. There is no opportunity for discriminatory features to be 

39 
shifted or occur in inconsistent locations when considering fixed wavelengths, making this TSC 

40 
problem share many similarities with the format of standard classification problems. The best 

41 
approach on this dataset however was ST-HESCA, though it was only marginally better than 

42 
HIVE-COTE. HIVE-COTE itself was over 2% more accurate than Flat-COTE; this an interesting 

43 
result as both HIVE-COTE and Flat-COTE contain the classifiers from ST-HESCA, which was suited 

44 
to this problem, and EE, which was not suited to this problem. This is a good example of how the 

45 
modular hierarchy in HIVE-COTE is robust when internal classifiers are not optimal for a problem, 

46 
compensating much better than the fiat structure allows within Flat-COTE. Interestingly, the 

47 
interval-based TSF did not perform well on this problem. We believe this is due to the simple nature 



 

 

 

1 Table 8. A summary of the results of the leave-one-boNle-out ethanol level problem. Classifiers are presented 
2 in descending order of accuracy. 
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9 

10 

11 

12 

13 

14 

15 

16 of the summary statistics that are calculated for each extracted interval, meaning the classifier 
17 cannot fully capture the discriminatory information in such a short band for this problem. 
18 

19 8.4.2 Detecting the Occurrence of an Epileptic Fit through Motion Detection. Our second case 

20 study is the epilepsy problem described in Section4.3. Our prior beliefs for this dataset were 

21 that this problem would be more easily approached than the ethanol level problem, as the data 

22 is seemingly suited to more approaches. We would expect dictionary, shapelet, and whole series 

23 approaches all to be able to discover discriminatory features in this problem. Therefore, we expect 

24 each to perform well, and the ensemble approaches to perform best through leveraging from the 

25 performance of the constituent parts. We performed a leave-one-person-out experiment and report 

26 the results in Table9. 
27 

Table 9. A summary of the results of the leave-one-person-out epilepsy problem. Classifiers are presented in 
28 

descending order of accuracy. 
29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 
42 

As anticipated, many approaches reported strong results on this problem. HIVE-COTE and 
43 

Flat-COTE were equally best, getting only 2/275 instances incorrect. A stand-out result however is 44 
RISE; the random spectral interval approach worked much better than anticipated on this problem. 45 
It is in direct contrast to the time domain-based interval approach, TSF, beating it by over 14% 46 
across all data. Though there is no clear discriminatory interval in the data, it would appear that 

47 
the trees in RISE combine well to capture the spectral features across many intervals. 

Classifier Avg Stdev 
ST-HESCA 84.88% 0.096% 

HIVE-COTE 84.37% 0.084% 
RotF 84.17% 0.114% 

HESCA 83.87% 0.112% 
Flat-COTE 82.29% 0.078% 

RISE 66.84% 0.112% 
TSF 64.45% 0.160% 

BOSS 51.98% 0.091% 
EE 26.59% 0.068% 

DTW 26.41% 0.069% 
 

Classifier Avg Stdev 
HIVE-COTE 99.27% 0.010 
Flat-COTE 99.27% 0.014 

RISE 98.55% 0.024 
BOSS 97.82% 0.041 

ST-HESCA 95.64% 0.029 
EE 94.91% 0.057 

DTW 93.09% 0.064 
RotF 89.45% 0.063 
TSF 84.36% 0.143 

HESCA 78.91% 0.116 
 



 

 

 

1 8.4.3 Vowel Classification from Raw Audio. Our final use case experiments focus on the vowel 
2 problem described in4.4. Though DTW originally came from the speech field before being applied 
3 to TSC problems, we would not expect it (or EE) to perform best on this problem due to the 
4 possibility of the previous/next term being included at the start/end of the series. Shapelet-based 
5 classification should therefore have an advantage, and we would also expect RISE to perform well 
6 too. It is common to apply spectral transforms to speech data, and this coupled with the fact that 
7 RISE creates intervals means that it should be able to extract discriminatory information without 
8 being confounded by noise at the start or end of the series. Unlike the previous case studies, the 
9 data does not need to be cut specifically to avoid bias as as all utterances were recorded by a single 
10 speaker. Therefore we can create a standard train/test split and perform seeded stratified resample 
11 experiments. We also plan to include the vowel problem in future releases of the UCR/UEA datasets. 
12 Table10reports the results of running 100 resample experiments. 
13 

14 

15 Table 10. A summary of the results of the vowel problem over 100 resamples. Classifiers are presented in 
16 descending order of accuracy. 
17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
RISE was the best performing classifier on this problem. This was expected, but it is perhaps 

31 
surprising to get almost 95% accuracy with no parameter optimisation or preprocessing, especially 

32 
given that we only retained 10% of the original data from the 50kHz recordings. To further investigate 

33 
this result and determine whether it is simply just a problem well suited to spectral approaches, 

34 
we also ran PS-HESCA and ACF-HESCA for context. These classifiers reported 77.4% and 68.9% 

35 
respectively. This clearly demonstrates that RISE fills a niche in TSC that current spectral approaches 

36 
do not address. We believe that this is because the interval aspect of RISE mitigates against potential 

37 
noise at the start and end of the series, but it could also be the interaction between ACF and PS 

38 
features within the same classifier. 

39 
Finally, Table10shows that HIVE-COTE also achieves high accuracy on this problem; it is second 

40 
overall and outperforms Flat-COTE by 3%. This is even more impressive when considering that 

41 
HIVE-COTE contains TSF, which reported only 33.6%. Even with TSF included, the hierarchical 

42 
structure of HIVE-COTE is able to leverage from the strong performances of RISE and ST-HESCA 

43 
without being mislead by TSF. The performance of HIVE-COTE across all three of these case study 

44 
datasets underlines the robustness of the new hierarchical structure and the performance of the 

45 
new classification modules. HIVE-COTE is at  least in  the top two  classifiers on these  use cases, 

46 
and where it is beaten, it is only marginally outperformed by one of its own modules (RISE or 

47 
ST-HESCA). 

Classifier Avg Stdev 
RISE 94.93% 0.025 

HIVE-COTE 93.26% 0.023 
ST-HESCA 90.80% 0.032 
Flat-COTE 90.26% 0.033 

BOSS 80.11% 0.037 
EE 72.14% 0.044 

DTW 68.57% 0.044 
TSF 33.64% 0.042 

HESCA 25.55% 0.038 
RotF 24.23% 0.037 

 



 

 

 

1 9 CONCLUSIONS AND FUTURE DIRECTION 
2 We set out to address two key questions. First, is the existing state of the art, Flat-COTE, significantly 
3 more accurate than current deep learning approaches for TSC? We answer this question by compar- 
4 ing Flat-COTE to two deep learning approaches: a benchmark CNN that we implemented ourselves 
5 and a TSC-specific CNN from the literature. Our analysis shows that Flat-COTE outperforms both. 
6 Flat-COTE is significantly more accurate than the standard CNN over 85 UCR/UEA datasets and 
7 significantly more accurate than the TSC-specific CNN over the 44 datasets reported in (Cui et al. 
8 2016). These findings motivate our second question; can we improve on Flat-COTE and make 
9 a significantly more accurate collective? We introduce HIVE-COTE, a new meta-ensemble with 
10 updated constituent classifiers and an encapsulated hierarchical structure. HIVE-COTE contains 
11 classifiers that can detect five types of discriminatory features: whole series, shapelet, dictionary, 
12 interval, and spectral. As part of HIVE-COTE we formally define a heterogeneous ensemble of 
13 standard classification algorithms (HESCA) that we pair with shapelet-transformed problems, and a 
14 novel random interval spectral ensemble (RISE) that we demonstrate is significantly more accurate 
15 than existing spectral approaches. Classifiers built in each of the five domains within HIVE-COTE 
16 are encapsulated in modules, and modules are combined through a hierarchical probabilistic voting 
17 structure. Through extensive experimentation on 100 resamples of 85 public datasets, 5 types of 
18 simulated data, and 3 new case studies, we demonstrate that HIVE-COTE is significantly more 
19 accurate than all alternatives for TSC, including Flat-COTE. To the best of our knowledge, HIVE- 
20 COTE is the most accurate published TSC algorithm. We release all source code for our algorithms 
21 and experiments, and encourage the community to contribute to this ever-expanding resource. 
22 In addition to refinements that we could still make to HIVE-COTE, such as exponential voting 
23 schemes or weighting predictions by class, the promising results of RISE and HESCA both suggest 
24 that further work could lead to advancement of these algorithms. We have not evaluated which 
25 constituents we should include in HESCA, nor have we optimised parameter settings for any of 
26 the internal classifiers (with the exception of 1-NN where there is minimal cost to do so). We have 
27 also not optimised the number of intervals/base classifiers to include in RISE, or whether we could 
28 include different combinations of features other than ACF and PS. It seems likely that we would be 
29 able to refine and extend these constituents within HIVE-COTE, which would also contribute to a 
30 more effective collective overall. Finally, the complexity of HIVE-COTE may make the approach 
31 prohibitive in use cases where real time classification is required on low-powered computing 
32 equipment. Therefore a further future research direction is to investigate whether the runtime of 
33 HIVE-COTE may be significantly reduced without a significant reduction in the accuracy of the 
34 approach. This could be tackled both theoretically through runtime complexity comparisons, or 
35 more practically through an evaluation of experimental runtimes between algorithms. This would 
36 generate further research questions to ensure any wallclock comparisons were conducted in a fair 
37 environment, but results of such a study would likely be of great benefit to practitioners in the field. 
38 

39 CODE AND DATA ACCESS 
40 

All code and data used in this work is open source and freely available from 5  and 6. The source 
41 

code is implemented in Java to extend the Weka Machine Learning Toolkit (Hall et al. 2009) and an 
42 

example use case with a common TSC problem is given in the main method of the HIVE-COTE 
43 

class. An interested researcher can run this classifiers on standard commodity hardware using any 
44 

TSC problem formatted in Weka’s Attribute Relation Format File type. 
45 

46    

47 
5UCR/UEA TSC Repository:www .timeseriesclassification.com 

48 
6UEA TSC Code Base:bitbucket .org/TonyBagnall/time-series-classification 

http://www.timeseriesclassification.com/


 

 

 

1 ACKNOWLEDGEMENTS 
2 This work is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) 
3 [grant numbers EP/M015087/1 and EP/M014053/1]. The experiments were carried out on the High 
4 Performance Computing Cluster supported by the Research and Specialist Computing Support 
5 service at the University of East Anglia. We also gratefully acknowledge the support of the NVIDIA 
6 Corporation with the donation of a Titan X GPU that was used for running the CNN experiments 
7 in this work. Finally, the authors would also like to thank James Large for recording the Ethanol 
8 Level problem used in this work. 
9 

10 

11 REFERENCES 
12 A. Bagnall, A. Bostrom, J. Large, and J.Lines. 2016. Simulated Data Experiments for Time Series Classification Part 1: Accuracy 
13 Comparison with Default Settings. Technical Report. School of Computing Sciences, University of East Anglia. 
14 A. Bagnall, L. M. Davis, J. Hills, and J. Lines. 2012. Transformation Based Ensembles for Time Series Classification.. In 
15 Proceedings of the 2012 SIAM International Conference on Data Mining, Vol. 12. 307–318. 

A. Bagnall and G. Janacek. 2014. A run length transformation for discriminating between auto regressive time series. Journal 
16 of Classification 31 (2014), 154–178. Issue 2. 
17 A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. 2016. The Great Time Series Classification Bake Off: a Review and 
18 Experimental Evaluation of Recent Algorithmic Advance. Data Mining and Knowledge Discovery (2016), 1–55. 
19 A. Bagnall, J. Lines, J. Hills, and A. Bostrom. 2015. Time-Series Classification with COTE: The Collective of Transformation- 
20 Based Ensembles. IEEE Transactions on Knowledge and Data Engineering 27 (2015), 2522–2535. Issue 9. 

G. Batista, E. Keogh, O. Tataw, and V. deSouza. 2014. CID: an e@cient complexity-invariant distance measure for time series. 
21 Data Mining and Knowledge Discovery 28, 3 (2014), 634–669. 
22 M. Baydogan and G. Runger. 2016. Time series representation and similarity based on local autopatterns. Data Mining and 
23 Knowledge Discovery 30, 2 (2016), 476–509. 

24 M. Baydogan, G. Runger, and E. Tuv. 2013. A Bag-of-Features Framework to Classify Time Series. IEEE Transactions on 
25 Pattern Analysis and Machine Intelligence 25, 11 (2013), 2796–2802. 

A. Benavoli, G. Corani, and F. Mangili. 2016. Should We Really Use Post-Hoc Tests Based on Mean-Ranks? Journal of 

26 Machine Learning Research 17 (2016), 1–10. 

27 A. Bostrom and A. Bagnall. 2015. Binary Shapelet Transform for Multiclass Time Series Classification. In Proc. 17th 
28 International Conference on Big Data Analytics and Knowledge Discovery (DAWAK). 

29 L. Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140. 
30 Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32. 

J. Caiado, N. Crato, and D. Pena. 2006. A periodogram-based metric for time series classification. Computational Statistics 
31 

and Data Analysis 50 (2006), 2668–2684. 
32 M. Cooke, J. Barker, S. Cunningham, and X. Shao. 2006. An audio-visual corpus for speech perception and automatic speech 
33 recognition. The Journal of the Acoustical Society of America 120, 5 (2006), 2421–2424. 
34 M. Corduas and D. Piccolo. 2008. Time series clustering and classification by the autoregressive metric. Computational 
35 Statistics and Data Analysis 52, 4 (2008), 1860–1872. 

Z. Cui, W. Chen, and Y. Chen. 2016. Multi-Scale Convolutional Neural Networks for Time Series Classification. 
36 

arXiv:1603.06995 (2016). 
37 J. Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7 
38 (2006), 1–30. 

39 H. Deng, G. Runger, E. Tuv, and M. Vladimir. 2013. A time series forest for classification and feature extraction. Information 

40 Sciences 239 (2013), 142–153. 
Y. F and R. Schapire. 1996. Experiments with a new boosting algorithm. In icml, Vol. 96. 148–156. 

41 
M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. 2014. Do we Need Hundreds of Classifiers to Solve Real 

42 
World Classification Problems? Journal of Machine Learning Research 15 (2014), 3133–3181. 

43 
B. Fulcher and N. Jones. 2014. Highly comparative feature-based time-series classification. IEEE Transactions on Knowledge 

44 and Data Engineering 26, 12 (2014), 3026–3037. 

45 S. García and F. Herrera. 2008. An Extension on âĂĲStatistical Comparisons of Classifiers over Multiple Data SetsâĂİ for all 
Pairwise Comparisons. Journal of Machine Learning Research 9 (2008), 2677–2694. 

46 T. Górecki and M. Łuczak. 2014. Non-isometric transforms in time series classification using DTW. Knowledge-Based 
47 Systems 61 (2014), 98–108. 



 

 

 

1 J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. 2014. Learning Time-Series Shapelets. In Proc. 20th ACM 
2 SIGKDD International Conference on Knowledge Discovery and Data Mining. 
3 A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. In 2013 IEEE 

international conference on acoustics, speech and signal processing. IEEE, 6645–6649. 
4 M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. 2009. The WEKA Data Mining Software: An 
5 Update. SIGKDD Explorations 11, 1 (2009), 10–18. 
6 J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation. 
7 Data Mining and Knowledge Discovery 28, 4 (2014), 851–881. 
8 Y. Jeong, M. Jeong, and O. Omitaomu. 2011. Weighted dynamic time warping for time series classification. Pattern Recognition 

44 (2011), 2231–2240. Issue 9. 
9 N. Kalchbrenner, E. Grefenstette, and P. Blunsom. 2014. A convolutional neural network for modelling sentences. 
10 arXiv:1404.2188 (2014). 
11 R. Kate. 2016. Using dynamic time warping distances as features for improved time series classification. Data Mining and 
12 Knowledge Discovery 30, 2 (2016), 283–312. 
13 A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In 

Advances in Neural Information Processing Systems 25. Curran Associates, Inc., 1097–1105. 

14 J. Lin, R. Khade, and Y. Li. 2012. Rotation-invariant similarity in time series using bag-of-patterns representation. Journal of 

15 Intelligent Information Systems 39, 2 (2012), 287–315. 

16 J. Lines and A. Bagnall. 2015. Time Series Classification with Ensembles of Elastic Distance Measures. Data Mining and 

17 Knowledge Discovery 29 (2015), 565–592. Issue 3. 
18 J. Lines, L. Davis, J. Hills, and A. Bagnall. 2012. A Shapelet Transform for Time Series Classification. In Proc. the 18th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining. 

19 J. Lines, S. Taylor, and A. Bagnall. 2016. HIVE-COTE: The Hierarchical Vote Collective of Transformation-based Ensembles 

20 for Time Series Classification. In Proc. IEEE International Conference on Data Mining. 

21 P. Marteau. 2009. Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching. IEEE Transactions on 

22 Pattern Analysis and Machine Intelligence 31, 2 (2009), 306–318. 
23 C. Ratanamahatana and E. Keogh. 2005. Three Myths about Dynamic Time Warping Data Mining. In Proc. 5th SIAM 

International Conference on Data Mining (SDM). 

24 Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. 2006. Rotation forest: A new classifier ensemble method. 

25 IEEE transactions on pattern analysis and machine intelligence 28, 10 (2006), 1619–1630. 

26 P. Schäfer. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge 
27 Discovery 29, 6 (2015), 1505–1530. 

28 A. Stefan, V. Athitsos, and G. Das. 2013. The Move-Split-Merge Metric for Time Series. IEEE Transactions on Knowledge and 
Data Engineering 25, 6 (2013), 1425–1438. 

29 Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical expressions. arXiv 
30 e-prints abs/1605.02688 (2016). 
31 J. Villar, P. Vergara, M. Menéndez, E. de la Cal, V. González, and J. Sedano. 2016. Generalized Models for the classification 
32 of abnormal movements in daily life and its applicability to epilepsy convulsions recognition. International Journal of 
33 Neural Systems (2016). 

G. Webb. 2000. Multiboosting: A technique for combining boosting and wagging. Machine learning 40, 2 (2000), 159–196. 
34 L. Ye and E. Keogh. 2011. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. 
35 Data Mining and Knowledge Discovery 22, 1-2 (2011), 149–182. 
36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 


