View metadata, citation and similar papers at core.ac.uk brought to you by iCORE

provided by University of East Anglia digital repository

Time Series Classification with HIVE-COTE: The Hierarchical VVote
Collective of Transformation-based Ensembles

JASON LINES, University of East Anglia
SARAH TAYLOR, University of East Anglia
ANTHONY BAGNALL, University of East Anglia

A recent experimental evaluation assessed 19 time series classification (TSC) algorithms and found that one
was significantly more accurate than all others: the Flat Collective of Transformation-based Ensembles (Flat-
COTE). Flat-COTE is an ensemble that combines 35 classifiers over four data representations. However, while
comprehensive, the evaluation did not consider deep learning approaches. Convolutional neural networks
(CNN) have seen a surge in popularity and are now state of the art in many fields and raises the question of
whether CNNs could be equally transformative for TSC.

Weimplement abenchmark CNN for TSC using acommon structure and use results froma TSC-specific CNN

from the literature. We compare both to Flat-COTE and find that the collective is significantly more accurate
than both CNNs. These results are impressive, but Flat-COTE is not without deficiencies. We significantly

improve the collective by proposing a new hierarchical structure with probabilistic voting, defining and
including two novel ensemble classifiers built in existing feature spaces, and adding further modules to
represent two additional transformation domains. The resulting classifier, the Hierarchical Vote Collective of
Transformation-based Ensembles (HIVE-COTE), encapsulates classifiers built on five data representations. We
demonstrate that HIVE-COTE is significantly more accurate than Flat-COTE (and all other TSC algorithms that
we are aware of) over 100 resamples of 85 TSC problems and is the new state of the art for TSC. Further analysis
isincluded through the introduction and evaluation of 3 new case studies and extensive experimentation on
1000 simulated datasets of 5 different types.

CCS Concepts: » Computing methodologies — Machine learning; Supervised learning by classiftca-
tion; Ensemble methods;

Additional Key Words and Phrases: time series classification, heterogeneous ensembles, meta ensembles, deep
learning

https://core.ac.uk/display/146460659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION

Time series classification (TSC) problems arise across a rich and diverse range of domains. We may
consider any ordered data to be a time series, which allows the definition to encompass data from
various fields such as finance, biology, medicine, and engineering. The diversity of such data is easily
apparent when visiting the University of California, Riverside/University of East Anglia (UCR/UEA)
time series classification repository® (Bagnall et al. 2016). The UCR/UEA datasets consist of 85
varied and freely available problems that are used throughout the TSC literature.

Given the ubiquitous nature and easy availability of data, many researchers have proposed
algorithms for solving TSC problems. The greatest research emphasis has been focused on classifying
problems in the time domain through using the raw series, typically defining new elastic distance
measures to couple with nearest neighbour classifiers (Jeong et al. 2011;Marteau2009;Stefan et al .
2013). Other approaches have also been proposed however, including dictionary and interval-based
techniques (Deng et al. 2013;Linetal . 2012;Schafer2015;Ye and Keogh2011), ensemble algorithms
(Bagnall et al. 2015;Lines and Bagnall2015), and transformation-based approaches (Bagnall et al .
2012;Gorecki and Luczak2014;Hills et al.2014;Kate2016).

The wealth of solutions that one could choose from when addressing a new TSC problem raises
the question of which technique(s) should be considered? A recent empirical evaluation was carried
out by (Bagnall et al. 2016) where 19 published TSC algorithms were implemented and tested
in a common framework?. Experimentation was extensive; each algorithm was tested over 100
resamples of the 85 UCR/UEA datasets. The results showed that, while there are many competitive
TSC algorithms with their own merits, one approach significantly outperformed all others in terms
ofaverage classification accuracy. Thisapproach, the Collective of Transformation-based Ensembles
(COTE) (Bagnall etal. 2015), combines classifiers built on four alternate representations of TSC
problems, where the most effective ensembling strategy was found to combine all classifiers into a
fiat hierarchy (Flat-COTE).

While this study evaluated the leading TSC algorithms that had previously been evaluated on
the UCR/UEA datasets, it did not include any deep learning methods. Deep learning approaches
have seen a recent surge in popularity in other fields, with convolutional neural networks (CNN) in
particular garnering state-of-the-art results across tasks such as image processing, natural language
processing, and speech recognition (Graves et al. 2013;Kalchbrenner et al . 2014;Krizhevsky et al .
2012). It is natural to ask whether CNNs could have such an impact on the field of TSC.

Our work seeks address two questions: first, is Flat-COTE more accurate than deep learning
approaches for TSC? We implement a CNN using a common framework and conduct experiments
on 85 datasets, and we also consider a recently published TSC-specific CNN implementation (Cui
et al. 2016) with results over 44 datasets. We demonstrate that Flat-COTE is significantly more
accurate than both deep learning approaches. However, despite its impressive performance, Flat-
COTE has certain deficiencies. This leads to our second question: can we improve on Flat-COTE and
define a better collective? We answer this by defining a new collective through a number of steps.
First, we formally define a heterogeneous ensemble of standard classification algorithms (HESCA)
that can be applied to both standard classification problems and TSC problems that have been
transformed into alternative feature spaces. We demonstrate the merits of HESCA and justify its
adoption through experimentation on 72 standard classification problems, subsequently applying
HESCA to shapelet-transformed data in our new collective. Second, we significantly improve upon
the current spectral approaches in Flat-COTE and replace them with a new random interval spectral
ensemble (RISE). Third, we assimilate classifiers from two further data representations into the

LUCR/UEA TSC Repository:www .timeseriesclassification.com
2UEA TSC Code Base:bitbucket .org/TonyBagnall/time-series-classification

http://www.timeseriesclassification.com/

collective, and include the original whole series approach from Flat-COTE. Finally, we introduce
a modular hierarchical structure for the collective with a probabilistic voting scheme that allows
us to encapsulate classifiers built on each domain. The resulting meta-ensemble, the Hierarchical
Vote Collective of Transformation-based Ensembles (HIVE-COTE), contains modules that capture
similarity withwhole seriesmeasures (Elastic Ensemble), phase-independent subseries (Shapelet
Transform with HESCA), an interval-based ensemble (Time Series Forest), a dictionary ensemble
(Bag-of-SFA-Symbols), and our new spectral ensemble, RISE. HIVE-COTE captures more sources
of possible discriminatory features in time series and has a more modular, intuitive structure.
Moreimportantly, we showthat HIVE-COTE issignificantly more accurate than Flat-COTE over
100 resamples of 85 datasets and it represents a new state of the art for TSC. We compliment
these results with a detailed analysis of HIVE-COTE and its individual modules over five types of
simulated data and three new case studies. All of our code and data is available from a public code
repository and accompanying website 3.

2 TIME SERIES CLASSIFICATION BACKGROUND

There have been many algorithms proposed in the literature for solving TSC problems. Due to the
rich and diverse nature of these solutions, we believe that the best way to understand them is to
group them by the type of discriminatory features that they use. Figurelincludes generated series

the exhibit typical discriminatory characteristics that we would expect for each type of similarity.

2.1 Wholeseries

Whole series techniques compare two series either as a vector (as with traditional classification) or
by a distance measure that uses all data points. In the latter case, measures are typically combined
with one-nearest neighbour (1-NN) classifiers and the simplest variant is to compare series using
Euclidean Distance. However, this baseline is easily beaten in practice, and most research effort has
been directed toward finding techniques that can compensate for small misalignments between
series using elastic distance measures. The almost universal benchmark for whole series measures
is Dynamic Time Warping (DTW) but numerous alternatives have been proposed. These involve
alternative warping criteria (Jeong et al. 2011), using versions of edit distance (Marteau2009;Stefan
etal.2013) andtransforming to use first order differences (Batistaetal. 2014;Gorecki and Luczak
2014). The most accurate whole series approach in the recent experimental evaluation by (Bagnall
et al. 2016) was the Elastic Ensemble (EE). (Lines and Bagnall2015) created an ensemble of 1-NN
classifiers using various elastic measures, combining them through a proportional voting scheme.
The example series in Figurelbdemonstrates a simple example of a whole series problem where
class membership is defined by the presence of a global base shape, where the shape starts at a
random location in the series and stretches between 10% and 100% of the full length. Measures
such as DTW detect this type of similarity by mitigating against this phase-shift/warping.

2.2 Intervals

Rather than use the whole series, the interval class of algorithm select one or more phase-dependent
intervals of the series. At its simplest, this involves a feature selection of a contiguous subset of
attributes. However, the three most effective techniques generate multiple intervals, each of which
is processed and forms the basis of a member of an ensemble classifier (Baydogan and Runger2016;
Baydogan et al. 2013;Deng et al . 2013). Figurelcdemonstrates a simulated example where there
are three discriminatory intervals within the problem, and class membership is defined by features
extracted within each interval.

Swww.timeseriesclassification.com/acm2017.php

http://www.timeseriesclassification.com/acm2017.php

2.3 Shapelets

Shapelet approaches are a family of algorithms that focus on finding short patterns that define a
class and can appear anywhere in the series. A class is distinguished by the presence or absence of
one or more shapelets somewhere in the whole series. Shapelets were first introduced by (Ye and
Keogh2011). The two leading ways of finding shapelets are through enumerating the candidate
shapelets in the training set (Hills et al. 2014;Lines et al . 2012) or searching the space of all possible
shapelets with a form of gradient descent (Grabocka et al. 2014). The simulated example in Figureld
shows a problem where class membership is defined by an embedded shapelet. Unlike the previous
interval example, the discriminatory feature may appear at any position within the series rather
than being fixed to a constrained interval.

2.4 Dictionary-based

Shapelet algorithms look for subseries patterns that identify a class through presence or absence.
However, if a class is defined by the frequency of a pattern, shapelet approaches will be poor. Dictio-
nary approaches address this by forming frequency counts of repeated patterns. They approximate
and reduce the dimensionality of series by transforming into representative words, then compute
similarity by comparing the distribution of words (Lin et al. 2012;Schéfer2015). The simulated
series in Figureleis an example of a two class problem where instances of each class contain
repetitions of the same two base shapes, but each class favours repetitions of one shape over the
other. This type of data should confound shapelet classifiers as the same two shapes will appear in
all series at least once.

2.5 Spectral

The frequency domain will often contain discriminatory information that is hard to detect in
the time domain. Methods include constructing an autoregressive model (Bagnall and Janacek
2014;Corduas and Piccolo2008) or combinations of autocorrelation, partial autocorrelation and
autoregressive features (Bagnall et al. 2015). To demonstrate such data, Figurelfprovides an
example generated using two autoregressive models, one per class, embedded in noise. It is unlikely
that the other groups of classifiers would be able to approximate this type of similarity as it is not
clearly apparent in the time domain.

2.6 Combinations of the Previous and Ensemble Classifiers

Two or more of the above approaches can be combined into a single classifier. For example,
concatenating different feature spaces (Kate2016), forward selection of features for a linear classifier
(Fulcher and Jones2014), and transformation into a feature space that represents each group and
ensembling classifiers together (Bagnall et al. 2015). More generally, ensemble classifiers contain a
set of base classifiers where individual predictions are combined through some process of fusion to
classify new cases. A key design principle is to inject diversity amongst constituent classifiers; this
is typically achieved by building duplicates of the same base learner and exposing each to different
training conditions. For example, this could be achieved by training each on a different subset
of attributes, building each with different subsets of the training data, modifying each through
instance reweighting or internal randomisation, or acombination of these approaches. Examples
in the literature include bagging (Breiman1996), which engenders diversity by boostrap sampling
training data with replacement for each constituent classifier. Adaptive boosting (AdaBoost) (F
and Schapire1996) iteratively reweights the sampling distribution of the training data based on
training accuracies of learners at each iteration. Multiboost (Webb2000) uses a combination of ideas

from bagging and boosting. Two highly-cited classification algorithms are themselves ensembles of

\/-/\ = Spike
Step
/\/ s SiNE
/\/\/\ === Headand
Shoulder
/\ Triangle
(a) Base Shapes
f A
WMWMMH \omtnram
e e (e L e

e e -

(c) Interval

(e) Dictionary

(b) Whole Series/Elastic

Ll

W«
W

..W,/‘\w,\m

(d) Shapelets

(f) Spectral

Fig.1. Simulated example seriestorepresenteachclassofsimilarity. Eachis generated with the base shapes in (), and
the process used to generate the series is described in more detail later in Section8.3. For clarity,

we present these series with low noise added to aid interpretability; we add standard noise in Section8.3to
increase the diKiculty of the problems when using them in experiments.

decision tree classifiers; Random Forest (Breiman2001) uses a combination of bagging and random
attribute sampling to inject diversity; Rotation Forest (Rodriguez et al. 2006) uses all training data
for each tree but partitions the attribute space and transforms the data using principle component
analysis, We believe a straight-forward and effective technique for introducing diversity into
an ensemble is to simply start with a pool of different classification algorithms as constituents.
However, such heterogeneous ensembles are far less common in the literature.

2.7 Experimental Comparison of TSC Classifiers

The results from a recent experimental evaluation of the leading TSC algorithms from each of the
previous groups by (Bagnall et al. 2016) are summarised in the critical difference (CD) diagram
in Figure2. CD diagrams were introduced by (Demsar2006). They show the average ranks of
multiple classifiers over multiple datasets and summarise a significance test between the ranks.
The horizontal black bars are cliques; if two classifiers are in the same clique, their ranks are not
significantly different (found using a Nemenyi post-hoc test). If they are not in the same clique,
they are significantly different. The main conclusion of (Bagnall et al. 2016) is that Flat-COTE is
significantly more accurate than all the other classifiers evaluated, representing the current state of
the art for TSC.

cD

9 8 7 6 5 4 3 2 1

l 1 l 1 l 1 1 1 l] l 1 l 1 l
Msm oot | 218 £acoTE ST
LPS 6.4059 856588 oo cq
TSBF 5.9235 4.0412 EE
TSF 5.7118 5.0176 DTW

5.6118 F

Fig. 2. Thecritical diKerence diagram of the top 9 classifiers taken from (Bagnall etal. 2016): Flat-COTE, ST
(Shapelet Transform Ensemble), BOSS (Bag-of-SFA-Symbols), EE (Elastic Ensemble), DTWF (DTW Features),
TSF (Time Series Forest), TSBF (Time Series Bag-of-features), LPS (Learned PaNern Similarity), and MSM
(Move-Split-Merge).

3 FLAT-COTE

Figure3shows the overall structure of Flat-COTE and how it combines 35 classifiers into a single
ensemble. It contains the constituent classifiers from the whole series TSC ensemble, EE (11 whole
series classifiers), 8 classifiers built on shapelet-transformed problems, and 16 spectral classifiers (8
built on autocorrelation features, 8 using the power spectrum). Each classifier is built independently
and produces separate training accuracies. Given a test instance, each individual classifier outputs
a single class prediction. The prediction of each classifier is weighted by its training accuracy, and
weighted test predictions are pooled. The class value with the highest combined vote is output as

the prediction by Flat-COTE. This generic proportional ensemble scheme is outlined in Algorithm1.

Algorithm 1 ProportionalEnsemble(classifiers, train, test)

1:trainAccs = ;¢

2: fori « 1to ¢lassifiers do

3 trainAccsi = findTrainingAcc(train, classifiers i)[]
4 classifiersi.buildClassifier(train)

5:testPreds =

6: fori — 1tofest do

7. votes= |

8: bs f Weight = 1*

9 bsfClass = &

10: for j « 1to ¢lassifiers do

11 p =classifiers;j.classify(testi)
12: votesp =votesp +trainAccsj;
13: if votesp >bsfWeight then
14: bsfWeight =votesp

15: bsfClass =p

16: testPredsi =bsfClass

17: return testPreds

The results of the experimental evaluation by (Bagnall et al. 2016) demonstrated that Flat-COTE
is significantly more accurate than any of the other algorithms that were evaluated. However, the
conclusions give rise to several questions:

(1) Could aclassifier from a different area of machine learning do better? The evaluation by
(Bagnall et al. 2016) considered many such approaches, but an obvious omission were deep
learning algorithms.

(2) Does the fiat structure cause a lack of robustness? For example, Flat-COTE contains 11
whole series classifiers, while the shapelet, ACF, and PS representations only have 8 each.
This gives the classifiers taken from EE a higher weight in Flat-COTE. Also, EE contains full
DTW and windowed DTW; in cases where the optimal window is 100%, these classifiers
will be identical but have two votes out of the 35. Conversely, if we included a tree-based
ensemble (such as TSF) with 500 classifiers, do we give it one compound vote, or 500
individual votes? Either is undesirable.

(3) Can we improve upon the current spectral methods used in Flat-COTE? The ACF and PS
classifiers make up almost 50% of Flat-COTE, yet the features are deterministically linked
and derived from the whole series.

(4) Can we create a better structure for the collective and include classifiers built on further
domains? Flat-COTE only contains classifiers from three of the five groups in Section2,

and the current structure within Flat-COTE makes it di@cult to fairly add new approaches.

We address these questions over the remainder of this paper through firstly comparing Flat-COTE
to two deep learning approaches. After demonstrating that Flat-COTE is more accurate, we define
a new collective: HIVE-COTE.

4 TSCDATASETS

4.1 UCR/UEA Time Series Dataset Repository

We use all of the 85 datasets currently in the UCR/UEA repository for the main experimental
evaluation. These problems have been commonly adopted by TSC researchers and the datasets are
splitinto pre-defined train/test partitions to allow reproducible research. However, always using
the same splits risks overfitting on a single sample. As we are focused on the relative performance
of classifiers, we adopt the same methodology as (Bagnall et al. 2016): we resample each dataset
100 times and report the average accuracies over 100 folds for a dataset. We seed the resample so

Flat-COTE

EE Individual ST Individual PS Individual
Predictions Predictions Predictions

Ll RERENy

In: Test predictions In: Test predictions
Out: Predictions weighted by CV/
v

VAR A AR AR
Weighted votes pooled. Majority class chosen

Fig.3. AgraphicalrepresentationofFlat-COTE. Theclassifiersfromthefourdomains(time/wholeseries,
shapelet,autocorrelation, powerspectrum)arecombinedinasimple, flatstructure. Eachclassifierisamodule,
andeachmodule hasasingleweighted vote (35 classifiers/modulesintotal). Weighted votesare pooled

together to select the class with the highest weight, which is subsequently used as the predicted class value
by Flat-COTE.

that experiments can be reproduced exactly. We also introduce three new case studies and make
the data freely available to other researchers.

4.2 Non-intrusive Detection of Ethanol Level in Alcohol

Up to 25% of licensed premises in some parts of the UK have been found to have counterfeit alcohol
for sale. Brown-Forman, the company that makes Jack DanielaAZs, estimates that around 30%
of all alcohol in China is fake. This is a health risk to the consumer as illegally produced spirits
may contain contaminants such as methanol, and an economic risk due to the avoidance of taxes.
Forgeries can sometimes be detected through external appearance such as poor labelling, but
currently there is no way to conclusively tell whether spirits are forged without opening the bottle.
However, the alcohol level of genuine spirits is tightly controlled and must equal the level stated on
the bottle, but forgeries generally do not have this level of quality control. This means one way of
detecting forgeries is by measuring the level of alcohol. Currently, this can only be done by taking
a sample which is not feasible for widespread screening. We are investigating non-intrusive ways
of testing the alcohol level using spectroscopy. We have conducted experiments using 20 different
bottle typesand four levels of alcohol: 35%, 38%, 40%, and 45%. Each seriesisaspectrograph of 1751
observations from bottles from 28 different bottle brands of whisky. Four resamples were taken
from each bottle. Toavoid experimental bias, we evaluate classifiers using a leave-one-bottle-out
cross-validation.

4.3 Detecting the Occurrence of an Epileptic Fit through Motion Detection

(Villar et al. 2016) investigate whether an epileptic fit can be identified using accelerometer data
attached to the wrist. They used six participants to complete ten repetitions of four different tasks:
walking; running; sawing; and mimicking epileptic seizures. The mimicked seizures were trained
and controlled following a protocol defined by a medical expert. Each patient wore a tri-axial
accelerometer on the dominant wrist. Three acceleration components were recorded at 16 Hz. The
duration of the experiments varied from 13 seconds to just over 4 minutes. We have formatted
their data into an equal length time series classification problem. We sample a random segment

of 13 seconds from the x-dimension of each series (length 208). We evaluate classifiers using a

35% 38% 40% 45%

@)

X -
Greatest A /\';_ 8 Discriminaroty
variation ?VA/? 7 ‘\ Features
AV f \

35% 38% 40% 45%

(b) ©

Fig.4. Examplesfromthe Ethanol Level problem. Part (a) showsthereisliNlediKerence betweentheaverage
profilesofeachclass,and (b)demonstratesthegreatestvariationbetweenexampleseriesofdiKerentclasses
seemstobeinthemiddleoftheseries. Expertknowledgesuggeststhatdiscriminartoyfeatureswillbeina
band towards the end of the series however. Part (c) expands the interval from (a) and shows there isa clear

diKerence beween the average class profiles when focusing only on this specific part of the series.

leave-one-person-out cross-validation, so that a repetition from a single person cannot be in both
training and testing sets.

4.4 Vowel Classification from Raw Audio
The GRID audiovisual sentence corpus (Cooke et al. 2006) is a large multi-speaker collection of
high-quality audio and video recordings of sentences by 34 speakers. Each sentence consists of
six words, where the term at each position is taken from predefined groups: command, colour,
preposition, letter, digit, and adverb (as shown in Tablel). For example, a valid sentence could
be ‘place green at J 4 soon’. The groups labelled with an asterisk in Tablelare keywords; each
speaker recorded every possible combination of colours, letters, and digits. The remaining positions
included random selections from the other word groups to create variation between speakers using
the same set of keywords. This resulted in in 1,000 sentences per speaker (w was not recorded in
the GRID corpus as it is the only multisyllabic English alphabetic character).

We create a TSC problem to identify which vowel was spoken from raw speech data. We used
a single speaker (speaker 10 from GRID) and crop sentences to a window of 280 milliseconds
(equivalent to 7 frames) centred on the 4t" term of the sentence, retaining cases only where the
spoken letter was a vowel (5 class values). The audio is sampled at 50kHz and the constraint in GRID

that all combinations of keywords must be recorded by each speaker guarantees that there will

O AN Ty
NAMAWN AN

e EDilEPS Y e SaWing Running Walking
Fig.5. Example series of each class from a single participant in the Epilepsy problem.

Table 1. Thesentencestructureinthe GRID corpus (adapted from (Cooke etal. 2006)). Keywordsare initalic
font and identified by (*).

command | colour(*) | preposition letter(*) digit(*) adverb
bin blue at A-Z 0 (zero), 1-9 | again
lay green by (excluding w) now
place red in please
set white with soon

be 40 utterances of each vowel by speaker 10 (as there are 4 colours and 10 digits). We randomise
and stratify the data, splitting 50% into training data and 50% into a test set. Unlike Epilepsy and
Ethanol, we are free to perform stratified resamples of the train and test partitions of the vowel
problem without introducing bias because we use a single speaker.

We use a fixed window when creating the problem primarily to ensure all series are the same
length (as per the UCR/UEA datasets), but this also allows us to introduce a degree of complexity
into the problem. Utterances of the same vowel by the same speaker will include natural variation
in length, as will the pauses before and after an utterance. Using a fixed window means that a case
may or may not include the end of the leading preposition at the start of a series, or the start of
the following digit at the end (or both). Additionally, using the full raw sound sampled at 50kHz
over 280ms would create series with 14,000 attributes. Whilst this length is not infeasible, it is
undesirable for the purpose of determining the relative performance of multiple classifiers onthe
problem, especially if we perform repeated resamples. Therefore, we downsample the data from
50kHz to 5kHz by retaining every 10t reading. This introduces additional complexity as we lose
information provided by the higher frequencies.

5 THE HETEROGENEOUS ENSEMBLE OF STANDARD CLASSIFICATION
ALGORITHMS (HESCA)

Flat-COTE is an ensemble approach containing constituent classifiers built on representations
of a problem in the time, shapelet, and spectral domains. This is the key principle of Flat-COTE;

by determining the domain(s) where discriminatory features are more easily detected a priori

Fig. 6. Anexample series of each vowel afler downsampling the raw data by a factor of 10

in training, Flat-COTE can weight the contribution of its internal learners when producing test
predictions. However, simply building models on various representations and favouring those in the
correct domain is not enough if the initial classifiers are poor. Additionally, a further consideration
is the quantity of classifiers built in each domain; Flat-COTE contains 11 time domain, 8 shapelet
domain, and 16 spectral domain classifiers. While the empirical results of Flat-COTE demonstrate
that the current configuration is effective, there is a clear imbalance between representations within
the collective. It is unclear how Flat-COTE would be affected by including or removing constituent
classifiers in any of the four domains, or by adding classifiers built in additional domains.

To mitigate these issues, it would be desirable to design a new collective using a meta-ensemble
structure to encapsulate classifiers built on different representations into modules. Rather than
contributing d individually weighted votes for a representation with d individual classifiers (as
in Flat-COTE), the new collective would combine votes at a module level and include a single
weighted vote for each module/representation. The rationale of why this is desirable is two-fold.
First, as discussed in Section2.6, the effectiveness of ensemble approaches for classification is well
documented inthe literature. Second, by encapsulating classifiers for each domain into modules,
any number of classifiers can be included within a module/representation without concern of
causing an imbalance in the collective.

We can simply reuse the Elastic Ensemble (EE) (Lines and Bagnall2015) to encapsulate classifiers
for whole series, but the solution is unclear for generated feature spaces (for example, shapelets).
In addition to maximising accuracy, we wish to also obtain accurate estimates of test accuracy for
modules to allow correct weighting within the collective. Subsequently, our choice of classifier is
infiuenced by three factors: maximising accuracy, minimising error when estimating test accuracy,
and minimising the variance of test estimates over multiple datasets. A tremendous amount of
research has focused on ensemble design and techniques for diversifying identical base classifiers
to inject diversity while maintaining accuracy. We take advantage of some of these advances, but
an alternative means of increasing diversity is to use a pool of different base learners rather than
diversifying a single base classifier. Transforming TSC problems into generated feature spaces
creates standard classification problems, which allows us to leverage the plethora of classification
algorithms that have been proposed in the literature. Given the abundance of algorithms at our

disposal, using different algorithms within an ensemble seems to be the simplest way to inject

diversity but the use of heterogeneous ensembles is often ignored. Therefore we propose the
Heterogeneous Ensemble of Standard Classification Algorithms (HESCA).

5.1 HESCA Constituents

HESCA includes eight constituent classifiers, two of which themselves are ensembles: k Nearest
Neighbour; Naive Bayes; C4.5 decision tree; Support Vector Machines with linear and quadratic basis
function kernels; Random Forest (with 500 trees); Rotation Forest (with 50 trees); and a Bayesian
network. These classifiers are chosen to give us a balance between probabilistic, instance-based,
and tree-based classifiers. HESCA is not specific to TSC and can be employed for any classification
task.

A simple majority voting scheme is inappropriate for HESCA because it would not capture the
relative performance of classifiers on any given dataset. Instead, each classifier is assigned a weight
according to the same proportional voting scheme used in EE (as described in Algorithm1). An
estimate of accuracy is obtained for each constituent by carrying out a 10-fold cross-validation
experiment on the training data only, and these estimates are then used to weight internal test
set predictions according to the procedure outlined in Algorithm1. All classifiers in HESCA are
the standard WEKA implementations and we do not perform any explicit parameter optimisation.

HESCA is designed to achieve three goals: maximise test accuracy, minimise error between
training CV estimates and test accuracies, and minimise variance in the error between training CV
estimates and test results over multiple datasets. Totest these three objectives we use 72 classification
problems fromthe University of California, Irvine (UCI) Machine Learning Repository*. Specifically,
we use the version of the data provided by (Fernandez-Delgado et al. 2014) who originally converted
125 UCI datasets into real-valued problems and carried out one of the largest machine learning
experimental studies to compare a range of classifiers. We have selected the 72 problems that
have at least 10 attributes because we wish to only focus on problems with a high dimensional
feature space. To match their experimental procedure, for each dataset we performed 100 jackknife
samples with 30% of cases used for training and 70% for testing and summarise our findings in the
following section by averaging accuracies across the 100 samples. Full results and code to recreate
all experiments can be found on the accompanying website for this paper.

HESCA Accuracies on TestData

We evaluate the test performance of HESCA by comparing results against those of each individual
constituent classifier. We present the results of multiple classifiers over multiple datasets using
CD diagrams, as previously introduced in Section2. However, we make a slight alteration to the
method of forming cliques. Following recommendations in (Benavoli et al. 2016) and (Garcia and
Herrera2008), we have abandoned the Nemenyi post-hoc test originally used by (Dems$ar2006)

to form cliques. Instead, we compare all classifiers with pairwise Wilcoxon signed rank tests, and
form cliques using the Holm correction, which adjusts family-wise error less conservatively than a
Bonferonni adjustment. It is worthwhile noting that cliques formed this way do not necessarily
refiect the rank order. For example, if we have three classifiers @, B, C) with average ranks (A >
B >0 , itis possible for A to be significantly worse than B but not significantly worse than C in
pairwise tests. This relationship cannot easily be displayed on a CD diagram. Happily, we did not
encounter this phenomena with any of the results in this paper and are able to use this new method
for calculating CD diagrams with the original presentational format throughout the remainder of
this paper.

4The UCI Machine Learning Repository:http:/archive .ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

9 8 7 6 5 4 3 2 1
NI NI IO I O Ao o |
||
u
NB 7-3247 2.3312 |\ roen
Ca5 67662 26234 g
BN 66234 3.3182 poae
NN 5-8312 5026 5\MQ
5.1558 g\/mL

Fig.7. Averageranksover 72 datasetsof 8 standard classifiersand HESCA, aweighted ensemble of the other
8.

The results in Figure7determine that we can reject the hypothesis that there is no difference
between the classifiers. HESCA is significantly more accurate than all constituents over the 72
datasets, with the exception of rotation forest (RotF). These results make a case for using either
HESCA or rotation forest in our new collective, but it raises the question of why would we use
HESCA over just using a rotation forest? Our hypothesis is that the diversity of the different base
learners within HESCA will reduce the error between estimates made from the training data and
actual test accuracies, and also reduce the variance of this error over multiple datasets. Both are
crucial factors when weighting modules correctly in the new collective and further investigation is

necessary.

5.2 Variation Between Training Estimates and TestAccuracy

The experiments in the previous section produced 100 test set accuracies for each classifier over the
72 datasets. Reusing this experimental setup allows us to also carry out a 10-fold cross-validation
(CV) on the training data for each classifier and sample to obtain an estimate of the expected test
accuracy a priori and compare to the actual test accuracy. Table2summarises the differences
training CV and test accuracies for each classifier 9averaged over the 100 resamples of the 72
datasets).

A positive difference in Table2is caused by the test accuracy of a classifier being higher on
average than the estimate formed on the train data. The first observation is that each of the classifiers
has a positive mean difference that is significantly different to zero (when tested by both a sign
test and sign rank test). This means that each classifier is underestimating test set accuracy from
the training data, which we believe is due to using a relatively small 30% training split for each
resample.

The second point of note is the relationship between test accuracy and the error between training
CV and test accuracy. The weaker classifiers in terms of accuracy (NN, C45 and SVMQ) have lower
average train/test differences than most of the more accurate classifiers (RandF and RotF). The
exception is HESCA, which is both accurate and has a relatively small train/test difference. More
concretely, there was no significant difference in test accuracy between HESCA and rotation forest
found in the previous experiment, but there is a significant difference in the mean train CV/test
difference between HESCA and rotation forest (using F-Tests at 5%). This indicates that HESCA

is more consistent in its estimation of test accuracy, and suggests that within HESCA the weaker

Table 2. Asummary of the diKerences between training and test accuracy for 9 classifiers on 100 resamples
of 72 datasets. A positive value indicates that on average over all folds and datasets, the test accuracy was
higher than the trainaccuracy.

Mean Diff. (%) | Median Diff. (%) | Std Error | Train < Test
NN 0.4997 0.1691 0.2012 52
HESCA 0.6106 0.1354 0.2680 54
SVMQ 0.6554 0.1704 0.2901 53
C45 0.6967 0.2388 0.2185 54
RotF 0.8940 0.1578 0.3208 58
NB 1.1262 0.1055 0.5345 49
RandF 1.1312 0.2075 0.3717 60
BN 1.2387 0.1197 0.4971 49
SVML 1.4758 0.1556 0.6696 48

classifiers are mitigating some of the errors made by rotation forest alone. The diversification
within HESCA is is not enough to significantly increase accuracy on these problems, but it does
significantly improve estimates made on training data and also reduces the variance in these
estimates. Both of these are key priorities for us and justify using HESCA over rotation forest in
our new collective. However, we do not wish to overstate these results as the beneficial effects
are small, and there are many unanswered questions. For example, we could include additional
algorithms, optimise parameters in training, etc. This is beyond the scope of this work however;
our objective is to develop a robust classification scheme by balancing accurate predictions with
accurate training estimates. We observe that in relation to its best components, HESCA is not less
accurate, has lower average difference between train CV and test accuracies, and the variation of
this difference is significantly lower.

5.3 HESCA forTSC

We have demonstrated the utility of HESCA using the UCI datasets, rather than the UCR/UEA
datasets, as each constituent is designed for use with standard classification problems. However, our
intention is to use HESCA within our new collective for TSC problems that have been transformed
from the time domain into generated feature spaces. Todemonstrate that the strengths of HESCA
hold for transformed TSC problems, Figure8shows the critical difference diagram between HESCA
and each of its constituents over 100 resamples of the 85 UCR datasets that have been transformed
into the shapelet domain.

The results of HESCA with the shapelet-transformed problems (ST-HESCA) reinforces our
previous findings; using shapelet-transformed data, HESCA is at least as accurate as any of its
constituent parts. Further, with shapelet-transformed data, ST-HESCA is significantly more accurate
than all of its component parts on the UCR/UEA datasets. We omit a detailed discussion between
training CV and test accuracy here as it is redundant in the case where ST-HESCA significantly
outperforms all of the alternatives, but we note that same relationship between accuracies was
observed as with the UCI datasets (full results are available online from the websiteaccompanying
this paper).

These results give a clear indication that HESCA should be used in our new collective for
shapelet-transformed problems. We could also use HESCA with problems transformed into the

spectral domain, but we believe that there is a more effective approach than using the whole series

ST-C45 8.0843

ST-NB g 0602
SST-NN
ST-BayesNet

18253 ST-HESCA
3.2651 ST-RotF
3.3554 ST-RandF
4.3554 ST-SVML
45723 ST-SVMQ

6.0723

Fig. 8. Average ranks of HESCA and its constituent classifiers over 100 resamples of the 85 UCR datasets
transformed into the shapeletdomain.

to represent the data for this module. We discuss our novel spectral approach in the following
section.

6 THE RANDOM INTERVAL SPECTRAL ENSEMBLE (RISE)

In many problem domains such as speech processing, discriminatory features are found in the
frequency domain rather than the time domain. Common approaches for solving problems such as
this involve using power spectrum or autocorrelation-based features (for example, (Bagnall and
Janacek2014;Caiado et al . 2006)). This is represented within Flat-COTE by building 8 standard
classifiers on truncated spectral features from the power spectrum (PS) and a further 8 classifiers
on a combination of autocorrelation, partial autocorrelation, and autoregressive features (ACF).
The results in (Bagnall et al. 2015) demonstrated that transforming data from the time domain to PS
and ACF features worked well within Flat-COTE, but there are two limitations with this method.

First, the true autocorrelation function is the inverse of the power spectrum, so in many ways the
two transforms are measuring the same thing (albeit at different resolutions). This means that almost
half of the constituents in Flat-COTE are spectral-based and may be causing an imbalance within
the collective. Second, the Flat-COTE approach for spectral classifiers uses the whole series for PS
and ACF transformations. This may cause the obfuscation of embedded discriminatory features,
especially for long series where spectral features may change over time. For example, speech
processing approaches often use a 20 millisecond sliding window to generate a two dimensional
spectrograph of frequency magnitude over time. This this approach is hard to generalise to TSC
problems however as windowing massively increases the feature space and also introduces an
additional parameter, which will require a further level of cross-validation to optimise. To overcome
the increased feature space and the problem of setting the window size, we propose a new classifier:
the Random Interval Spectral Ensemble (RISE).

RISE draws on ideas from tree-based ensembles such as random forest and the TSC interval
feature classifier time series forest (TSF) (Deng et al. 2013). Like TSF, we build trees on random
intervals from the data to construct a random forest classifier. A key difference however is that TSF
uses time domain features by calculating the mean, variance, and slope of each interval, but RISE
extracts spectral features over each random interval instead. We start by selecting 500 random
intervals and calculate spectral features for each interval independently. We train a separate decision
tree classifier on each set of features, then combine trees into a forest. The resulting ensemble

classifier contains 500 base learners that are diversified through interval selection. Additionally,

the first tree in RISE is a special case that uses the whole series. The procedure for building RISE is
outlined in Algorithm2.

Algorithm 2 BuildRISE(Training data train, number of classifiers r, minimum interval length
minLen)

1:Let F=< F1... Fr>be the trees in the forest.

2: Let m be the length of series in tr ain

3:wholeSeries Features =getSpectralFeatures(train)

4: F1 .buildClassifier(whol e S er ies F e atur es)

5. fori « 2tordo

st ar t P os = randBetween(1, m minLen)

end Pos =randBetween(startPos +minLen, m

interval =train.removeAttributesOutsideOfRange(star tPos,end Pos)

interval Featur es = getSpectralFeatures(interval)
Fi.buildClassifier(interval Featur es)

QL ® N

=

There are many options for the spectral features that we could use within RISE. We could use
PS features, ACF features, or a combination of the two (more details of alternative schemes are
available in (Bagnall and Janacek2014)). We hypothesise that the best classifier will be produced
through combining PS and ACF features for a single classifier (for context, the initial iteration
of this work in (Lines et al. 2016) used only ACF features). We test this hypothesis using the 85
UCR/UEA datasets in the following experiments, but first demonstrate the intuitive strengths of
RISE over current spectral methods in a motivational example using simulated data.

6.1 RISE vs. Current Spectral Methods

We run two sets of experiments to demonstrate that RISE produces a significantly more accurate
classifier than the full series spectral methods, used either independently or in conjunction. We
represent the current approaches by converting TSC problems into ACF and PS features and train
a classifier on each; our findings in Section5naturally lead us to select HESCA. We design our
experiments to test three hypotheses:

(1) RISE is not significantly less accurate than current spectral approaches when discriminatory
features are located in the spectral domain over the whole series;

(2) RISE is significantly more accurate than the current spectral approaches when discrimina-
tory features are located in the spectral domain over specific intervals;

(3) RISE is significantly more accurate than current spectral approaches on the UCR/UEA
datasets.

We generate two synthetic problems to test hypotheses 1 and 2. First, we create a spectral
problem using two autoregressive models of the type described in (Bagnall and Janacek2014) to
represent classes in a binary problem where discriminatory features span the whole series. Second,
we repeat this process, but embed the spectral features within a problem-dependent random interval
surrounded by white noise. The intuition is that all spectral approaches will perform well on the first
problem, but the white noise in the second problem will confound the whole series approaches and
RISE will outperform competing techniques. We create both problems with 80 series of length 100
and partition 50% of the data for training. Similarly to Section5we report classification results for
each classifier averaged over 100 runs, although we now generate independent data sets rather than
resample the same dataset. We experiment with a range of spectral classifiers used in conjunction
with HESCA: PS-HESCA, ACF-HESCA, and PSACF-HESCA. Wereport results over 100 runs, and
also include a rotation forest and DTW 1-NN as benchmarks for comparison. The full results are

available on the supporting website and are summarised in the boxplots in Figure9.

|
1 +

0.7 L

[] [
| | ‘ T T T |
! \ ! !
09| 4 } ‘ E T ! ! !
| + |
\
\
o8| i 4 o8l i
_ !
\

;
!
0.7 | |
!
! |
06| |]
; 06|
+ I . .
05 | * | |
; 05|

041

T
| |

. 0.4 L ! .
|
|
|

03| L 4 .
03 L i
RotF DTW ACF PS PSACF RISE RotF DTW ACF PS PSACF RISE

@ (b)

Fig.9. Boxplotofaccuracies of six classifiers for 100 AR simulation experiments (a) and 100 AR simulation
experiments embedded in noise (b).

The results support our first two hypotheses for RISE. First, there was no significant difference
between RISE and any of the spectral-HESCA implementations on the whole series problem. The
boxplot in FigureQademonstrates that there was little difference in performance between RISE,
ACF-HESCA and PSACF-HESCA, though PS-HESCA clearly did not perform as well as the other
three spectral methods. This observation informally supports our intuition that including both
PS and ACF features will produce the best spectral classifier. Second, RISE was significantly more
accurate than all of the spectral-HESCA approaches when discriminatory information isembedded
inarandom interval surrounded by noise (confirmed with rank-based pairwise tests). In fact, the
boxplot in Figure9bshows that embedding the problem in noise had very little, if any, effect
on the ability of RISE to detect discriminatory features as the classifier reported almost idential
performance.

The results for RISE are promising. Using simulated problems, it appears that RISE fulfils our
desired criteria and is robust when spectral features span either the whole problem or a specific
interval. However, it is easy to provide experimental support for an algorithm using only problems
that are designed to play to its strengths. These initial experiments confirm our intuitions about
RISE under ideal circumstances, but we also use the 100 seeded resamples of the 85 UCR/UEA
datasets to run experiments with RISE and the three variants of HESCA (ACF, PS, and PSACF). The
full results are available on the website and are summarised in Figurel0.

The results in Figurel0demonstrate two points. First, RISE is significantly more accurate than
HESCA with any combination of spectral features on the UCR/UEA data. This both reinforces the
resultsinthe previous experimentand confirms our third RISE hypothesis. Secondly, PSACF-HESCA
significantly outperforms the other HESCA implementations. These results informally support
our hypothesis that the best solution for spectral problems is to combine ACF and PS features
into a single classifier, rather than just using one or the other. However, to confirm this finding is
consistent within RISE, we implement variants of RISE using only ACF or PS features and also run
them over the 100 resamples of the UCR/UEA datasets. We compare against the implementation of
RISE from Figurel0that included combined ACF and PS features. The final results are summarised
in the pairwise critical difference diagram in Figure1l. The results confirm that combining PS and

ACEF features leads to a significantly more accurate classifier than using only ACF or PS features.

CD

HESCA(ACF) >2°%8 18647 B |SE HESCA(PS+ACF)

HESCA(PS) 2.9882 2.1882

Fig. 10. A pairwise critical diKerence diagram of RISE and the full series spectral approaches over 100
resamples of the 85 UCR/UEA datasets

Further, RISE is significantly more accurate than our initial spectral approach in (Lines et al. 2016)
which is equivalent to using RISE with ACF features only.

2.5412 1.5294
RISE(PS) 2 294 RISE(PS+ACF) RISE(ACF)

1.9294

Fig.11. Apairwisecritical diKerence diagramto showthe diKerence between implementations of RISE using
all available spectral features and RISE using either ACF or PS features only.

7 ANEW COLLECTIVE: HIVE-COTE

Weintroduce a new version of COTE that we call the Hierarchical VVote Collective of Transformation-
based Ensembles (HIVE-COTE). HIVE-COTE is an improved version of Flat-COTE that uses a
modular hierarchical meta-ensemble structure. Given a problem where the classifiers across all
four internal domains of Flat-COTE achieve similar training accuracies, the collective will be
biased due to an uneven number of classifiers built in each domain. HIVE-COTE overcomes this
potential design bias by modularising the elements of each group of classifiers. It allows only a
single probabilistic prediction from each domain (whole series; interval; shapelet; dictionary; and
spectral). The components of a module (ensemble of classifiers on a certain type) then becomes
an encapsulated design decision. From the top level, it does not matter if a module contains one
classifier or five hundred. The overseer simply defines how to combine module predictions into a
single overall estimate.

7.1 Hierarchical Voting Structure
More formally, suppose we have g modules for a problem with C classes, where ¢ = c. Each

module produces an estimate of the probability of the class variabley, p; ¥ =i forj=1...gand
i =1...c. Each module has a weight w;j, which is an estimate of the accuracy on unseen data

formed from the train data (found through cross-validation). The collective probability is simply
the normalised weighted sum over modules,

W =)
ply=i)= .

B Jawip (=K
The class predictionyis then just

y=arg maxp y=i.)
i=1...9

Flat-COTE treats each classifier as a single module, whereas HIVE-COTE uses each constituent
ensemble as a module. This structure creates a more balanced and intuitive collective as each
module corresponds to a different base ensemble, and encapsulating domain predictions into
separate modules means that the number of classifiers built in each domain will no longer be a
source of bias in HIVE-COTE.

7.2 HIVE-COTEModules

HIVE-COTE contains five modules: the Elastic Ensemble for whole series similarity, HESCA trained
with shapelet-transformed problems, two modules from other published research for interval and
dictionary-based similarity, and our new spectral ensemble, RISE.

7.2.1 ElasticEnsemble (EE). EE, proposed by (Linesand Bagnall2015),combines 1-nearest neigh-
bour (1-NN) classifiers using various whole-series measures. The majority of research emphasisin
TSC has been placed on defining similarity measures to couple with 1-NN classifiers. Given the wide
choice in measures that could be used, a preliminary experiment by (Lines and Bagnall2015) showed
that there was no similarity measure that significantly outperformed all others when coupled with
1-NN classifiers. The results did however demonstrate that the classifiers made predictions in
significantly different ways. Using this finding, EE was created to utilise the diversity between
alternative elastic measures by building different 1-NN classifiers to combine into a proportional
ensemble (using the same scheme outlined earlier in Algorithm1), which was significantly more
accurate than any of its constituent parts. All parameter settings for the measures are set through
cross-validation on the training data.

7.2.2 ShapeletTransformeddatawithHESCA (ST-HESCA). Theshapelettransform (ST) described
by (Hills et al. 2014) separates shapelet discovery from the classifier by finding the top k shapelets
from a single run, rather than through recursively searching to build a decision tree classifier as in
the original shapelet implementation (Ye and Keogh2011). Data are transformed with ST by using
extracted shapelets, where attributes in a new instance are the distances from an input series to
each shapelet. We use the most recent version of ST (Bostrom and Bagnall2015) that balances the
number of shapelets per class and evaluates each shapelet on how well it discriminates a single class.
It is possible to use any standard classification algorithm with problems after being processed by
ST; given our findings in Section5, we build HESCA with shapelet-transformed data (ST-HESCA).

7.2.3 Bag-of-SFA-Symbols (BOSS) Ensemble. The core process for dictionary methods involves
forming words by passing a sliding window of length w over each series, approximating each
window to produce | values, then discretising these values by assigning each a symbol from an
alphabet of size «. BOSS, introduced by (Schafer2015), uses a truncated discrete Fourier transform
to compress each window, then discretises through multiple coe@cient binning. The resulting

distribution of words forms the basis for 1-NN classification and uses a bespoke non-symmetrical

distance function. BOSS also includes a parameter that determines whether the subseries are
normalised or not. During the parameter search of window sizes, the BOSS ensemble retains all
classifiers with training accuracy within 92% of the best. New instances are classified by a majority
vote.

7.2.4 Time Series Forest (TSF). (Dengetal. 2013) proposed TSF, which overcomes the problem of
the huge interval feature space by employing a random forest approach with summary statistics of

each interval as features. Training a single tree involves selecting mrandom intervals, generating
the mean, standard deviation, and slope of the random intervals for every series. Trees are trained
on the resulting 3 ‘mTeatures and classification is by majority vote.

7.2.5 Random Interval Spectral Ensemble (RISE). The final module we include in HIVE-COTE is
our new spectral ensemble, RISE. We use the combination of ACF and PS features as described in
Section6.

HIVE-COTE

Elastic ape et BOSS Ensemble Time Series sRantng"é Inten::l
Ensemble Ensemble Forest pectral Ensemble

! ! I ! |

i predictedciass | [inPredciedeiss | in: Predictedclass In: Predictedclass In: Predictedclass

probabilities probabilities probabilities probabilities probabilities
Out: CV-weighted out: CV-weighted Out: CV-weighted Out: CV-weighted Out: CV-weighted
probabilities probabilities probabilities probabilities probabilities
T T

Fig. 12. A graphical representation of HIVE-COTE. The classifiers from the five constituent ensembles are
combined using a probabilistic hierarchy. The key diKerence to Flat-COTE is that classifiers in each domain
formasingle module in HIVE-COTE, encapsulating predictions over each domain to create amore balanced
structure.

7.3 DefaultParameters

To remain consistent with the literature, we use the parameter setting configurations described in
(Bagnall et al. 2016) for the modules in HIVE-COTE, with the exception of RISE which is new to
this work. For simplicity, we set RISE to use the same number of intervals/trees as TSF. The list of
modules and associated parameters are summarised in Table3.

Table 3. Thedefault parameters used to build HIVE-COTE modules. EE and BOSS use leave-one-out cross-
validation (LOOCV), ST-HESCA uses 10-fold CV,and RISE and TSF do not require any parameters to be set
in training.

Classifier Parameters Training Folds
EE 100 options for each constituent (full list available in (Lines and Bagnall2015)) LOOCV
ST-HESCA | ST:1=from 3 to m; HESCA: default params as in Section510-fold

RISE r = 500, random interval lengths from 16to m N/A

TSF r =500 N N/A

BOSS a =4, w from10tom withmin(200, m),l € 8,10,12,14,16 Loocv

7.4 Time Complexity

The time complexity of HIVE-COTE is no different to Flat-COTE. The complexity of HIVE-COTE
isbounded by ST-HESCA due to the shapelet extraction procedure, and Flat-COTE also contains
classifiers built on shapelet-transformed data. Therefore both collectives have the same time
complexity: O(n?m*#).

Table 4. The training time complexities for the constituent modules in HIVE-COTE.

Classifier Train Time Parameters

EE 0 (n*m#%)

ST-HESCA | O(n2m?)

RISE O(knm?) k : number of intervals
TSF O(rmn log n) r: number of trees
BOSS O (nm(n-w)) w :window length

There are two main criteria for comparing classification algorithms: test accuracy and time
complexity. In this work we focus specifically on comparing classifiers based on test accuracy. It is
certainly of interest to reduce the time complexity without reducing the accuracy of strong TSC
algorithms, but there is little merit in accelerating poor models.

The objective of HIVE-COTE isto be significantly more accurate than Flat-COTE. Itis trivial
to make an algorithm faster if it is significantly less accurate (e.g. random guessing), but it is not
trivial to make a significantly more accurate algorithm regardless of runtime. While runtime is
an important (and sometimes crucial) factor for certain applications, this is not the motivation
behind HIVE-COTE and is of secondary interest to us in this work. Our hypothesis is that HIVE-
COTE will fulfil the first criteria and be significantly more accurate than Flat-COTE, and there will
also be no significant difference between runtimes. Additionally, we have found through internal
investigations that we can speed up both HESCA and the shapelet transform by at least an order of
magnitude with no significant difference in accuracy through using simple heuristics. Therefore
direct time comparisons between algorithms would also be misleading at this point. We defer the
discussion of speedups to HIVE-COTE for future work, and focus specifically on test classification

accuracy in the following experiments.

8 RESULTS

We report our experiments in four parts. First, we investigate how a benchmark CNN and a recently
proposed TSC-specific CNN compare with the current state of the art for TSC, Flat-COTE. Second,
we compare our new probabilistic hierarchical meta-ensemble, HIVE-COTE, to Flat-COTE and the
other leading TSC algorithms. Third, we analyse the performance of HIVE-COTE and its constituent
parts under various conditions using simulated data. Finally, we include in-depth results of three

new case study problems using HIVE, RISE, and HESCA.

8.1 Flat-COTE and Deep Learning

The CNN and MCNN used by (Cui et al. 2016) were evaluated on 44 of the 85 UCR/UEA datasets.
However, the CNN was used only as a comparison to MCNN and the actual results of the CNN
were not published, while the published MCNN results were only recorded on roughly half of the
UCR/UEA datasets. We wish to run our own standard CNN over the 85 problems as a benchmark
to understand how the standard approach compares to other algorithms before comparing MCNN
to the state of the art. We create CNNSs in the Theano framework (Theano Development Team
2016) using stochastic gradient descent with momentum and one convolutional layer, followed by

a max-pooling layer and three fully connected layers. Each convolutional/fully connected layer

contains 256 filters/units. The hyper-parameters (and the range of values we consider) that must
be set are: the learning rate (0.1, 0.01, 0.001), filter size (0.05, 0.1, 0.2), pooling size (2, 3, 5), and
the number of training epochs (50, 100, 200). We select parameters through minimising error in
training, favouring smaller epochs in the event of ties to avoid overfitting. Figurel3summarises the
results of the CNN over the 85 datasets to the current state of the art, Flat-COTE, and the common
benchmark of DTW 1-NN with warping set in training.

DTW CV 1-NN 24226 L1244 rat.CcOTE
2.3333 CNN

Fig. 13. Flat-COTE compared to DTW 1-NN and CNN on 85 UCR/UEA datasets.

Flat-COTE significantly outperforms the CNN on the 85 UCR/UEA datasets, while the average
rank of CNN is not significantly different to DTW. This demonstrates that the standard CNN is at
least competitive with the DTW benchmark, but cannot match Flat-COTE. However, the results
reported by (Cui etal. 2016) stated that their MCNN significantly outperformed a standard CNN
over 44 UCR/UEA datasets. We compare the published MCNN results to our CNN and also find a
significant difference, so it is worthwhile also comparing MCNN to Flat-COTE. Over the 44 datasets
that they report result for, Flat-COTE wins on 28 datasets, MCNN on 14, and they tie on 2. The
difference is significant according to both a binomial test and a Wilcoxon signed-rank test.

1

Flat-COTE
Better Here
0.9
3
<
3
2
L,LJ
5 o8
Q
g
(VI
0.7
MCNN Better Here
0.6
0.6 0.7 0.8 0.9 1

MCNN Test Acc

Fig. 14. AscaNer plotofthe test accuracies over the 44 UCR datasets used by in (Cui etal. 2016) (two Flat-
COTE wins omiNed for clarity). Flat-COTE wins on 28, MCNN wins on 14, and they tie on 2. The diKerence is
significant. The average test accuracy of Flat-COTE over these problems is 88.6%, and MCNN is 86.5% (+2.1%

in favour of Flat-COTE).

Though Flat-COTE is significantly more accurate than MCNN, comparing MCNN to DTW 1-NN
over the 44 datasets finds a significant difference in favour of MCNN. This is still an impressive
feat, as only a handful of algorithms evaluated by (Bagnall et al. 2016) actually outperformed DTW.
It demonstrates promise, and warrants further investigation of deep learning applications to TSC.
However, the current state of the art is confirmed to be Flat-COTE and our next objective isto
evaluate whether HIVE-COTE is a significant improvement.

8.2 HIVE-COTE on UCR/UEA Datasets

Section2included a CD diagram summarising the relative performance of the top classifiers in the
experimental evaluation by (Bagnall et al. 2016). These results were generated using 100 resamples
of the 85 UCR/UEA datasets, where resamples were seeded to allow researchers to recreate the
experimental procedure exactly. This allows us to run HIVE-COTE under the same conditions and
update the evaluation to include our new collective. Table5and Table6report the 100-fold average
classification accuracies for HIVE-COTE and the classifiers in (Bagnall et al. 2016) that significantly
outperformed Rotation Forest and DTW 1-NN.

9 8 7 6 5 4 3 2 1
el bbbt
Lpg 08941 16059 |1v e COTE
TSBF 64765 28471 Elat-COTE ST
TSE 6.3 4.1588 BOSS
DTW-F 6.2647 46529

5.8

Fig. 15. Thetop TSCalgorithmsfrom (Bagnall etal. 2016) compared to HIVE-COTE usingapairwise CD
diagram.

HIVE-COTE is significantly more accurate than all alternatives, including Flat-COTE. Against all
algorithms, HIVE-COTE wins on 45 out of the 85 datasets and is ranked within the top 3 classifiers
on 83 problems. This underlines the utility of transformation-based ensembles in general, but also
demonstrates the effectiveness of the new hierarchical structure given the relative performance
against Flat-COTE. We could not include MCNN in the full comparison as results were only
published for a single train/test split for 44 of the 85 datasets. However, we can compare MCNN to
HIVE-COTE on the default train/test splits for the 44 datasets. The result of this pairwise comparison
is that HIVE-COTE wins on 30, MCNN on 11, and they tie on 3. The difference is significant and

shown in further detail in Figure16.

8.3 HIVE-COTE on Simulated Datasets

In Section2we assigned TSC algorithms to five groups: whole series/elastic; interval; shapelet;
dictionary; and spectral. We have designed HIVE-COTE to include a module to represent each

group, and we posit that each will be optimal for data with different discriminatory characteristics.

Table5. TestResultsPart|: The average accuracy of the best classifiers from (Bagnall etal. 2016) and HIVE-

COTE over 100 resamples of the UCR datasets (continued in Table6). The classifiers included are: ST-HESCA
Shapelet Transform data with HESCA), BOSS (Bag of SFA Features), DTWF (DTW Features), TSF (Time
eries Forest), TSBF (Time Series Bag-of-features), LPS (Learned PaNern Similarity), EE (Elastic Ensemble), Flat-

COTE,andHIVE-COTE. Thebestresultforeachdatasetishighlightedinbold. HIVE-COTEwinson

45/85 datasets overall, and beats Flat-COTE on 69/85 problems in a head-to-head comparison.

ST- Flat- Hive-
HEsca BOSS DTW.F TSF TSBF LPS EE -2 CoTe
AUIEC |~ 7684 7494 6050 70.72 72.68 7650 6650 8098 8154

A”O"V*éeeae‘; 8511 87.52 7758 7894 80.09 80.63 8597 87.68 88.77

BeetleFly | 7357 6150 5460 6477 5543 5197 5320 764 7227
BirdChicken | 8745 94.85 8525 84.25 79.85 89.25 8225 9210 959

Car | 9270 984 8650 83.85 00.20 8540 84.80 9410 95.05

)] CBF | 90.18 8550 8513 7583 79.55 83.58 7995 89.90 9255
ChlorineConcentration | og56 9981 97.87 9577 97.73 9845 99.30 99.80 99.94
CINCECEIOMO | 6821 6596 6576 7188 6834 6416 6586 7356 7251
Computers | 9183 90.04 7142 9737 7164 7428 9450 9827 988

Cricketx | 9950 98.86 97.29 98.86 98.18 9500 98.93 99.96 99.82

Cricket | 78.46 8023 6590 76.81 7654 7260 73.16 76.97 81.94

_ CricketZ | 7771 7636 7692 69.14 73.06 69.60 80.11 81.40 83.04
DéaL%mlsuzeXedgcuon 7622 7493 7563 68.79 7283 7062 7943 8149 837
oty | 79780 77.57 7852 7067 7376 7136 8036 8260 84.77
DPhalanxtw | 9112 9394 9422 9413 89.03 9145 946 9248 94.19
Earthquakes | 81.94 8141 7596 8129 8117 7415 7680 8212 82.63

ECG200 | 8293 8146 79.62 8095 8156 7674 76.83 80.46 82.49

ECGS000 | 6904 6730 6583 6857 69.04 61.83 6541 6932 69.82
Elggﬁgg’gaﬁgg 7373 7459 7475 7467 7465 66.78 7350 7468 74.70
FaceAll | 8402 89.05 8185 86.82 84.68 80.75 88.10 87.29 88.19

FaceFour | 9434 9405 9396 9439 9378 9173 93.86 9461 94.73

FacesUCR | 9550 9833 90.71 9216 84.88 8395 8472 98.62 98.95

FittyWords | 8954 79.95 87.43 8042 80.85 8532 8307 8828 88.97

Fof('jsﬂ 96.76 97.42 9627 9493 9418 96.15 9757 99.00 99.63

s | 7940 9956 9092 89.06 8618 88.89 87.93 8503 94.95

GunPomnt | 9093 9506 8891 89.68 8493 9100 9483 9666 98.36

Ham | 7130 7022 74.84 7280 7444 7762 8207 8012 80.68

HandOutines | 97.42 9687 9311 8072 91.26 9117 9134 9622 97.62

Haptics | 9654 9195 8841 8156 8310 8695 7506 9546 95.97

m"r';ée;{('ar}g 9151 9110 8430 79.01 7506 8523 7569 9286 92.72
Insectwingoeatsound | 9987 9941 9636 9617 9645 07.19 9742 9919 9967
ltalyPowerDemana | 80.84 8360 79.46 7950 7107 6850 7634 8052 84.08
LargeKitchenApps | 92.39 90.28 9153 90.86 87.95 86.75 88.01 8939 91.20
Lightning2 | 51.19 4590 46.36 46.68 46.31 4152 4506 51.69 53.03
Ligntning/ | g534 6053 60.92 60.63 59.05 54.86 56.63 63.19 63.39

Mallat | 3930 5027 3822 37.85 3771 44.87 47.64 5265 5259

Meat | 6165 51.03 6021 61.30 61.60 51.91 5810 63.89 6354

9531 86.60 9479 9576 9262 9140 9508 97.03 96.78
9325 83.66 8230 6444 5506 67.97 8158 90.00 92.27
6589 81.00 7102 7567 7598 7566 8352 7848 79.70
7244 6656 67.12 7226 68.03 63.08 7634 7995 8111
9723 9486 9288 93.65 9511 90.82 96.07 97.42 97.55
9657 98.03 9833 9783 9825 96.80 97.85 98.08 98.72
Average Accuracy | 83.80 83.35 8054 7958 79.87 7951 8119 8579 86.92
AverageRank | 4.16 4.66 6.26 630 648 689 580 284 161

Dataset

Furthermore, we hypothesise that HIVE-COTE will be as accurate, or at least not significantly worse,
than the best approach for each data type. This is di@cult to evaluate with real data as there are
many possible confounding factors and biases towards the type of data that can be readily collected.
With this in mind we have created data simulators for each type of problem to test these hypotheses.
Briefiy, each simulator places one or more of the shapes shown in Figurelainto standard normal

noise. The location, size, frequency, and/or type of shape defines the simulator. Examples generated

by each simulator with very low noise were given as examples series in Section2. Examples of

Table 6. Test Results Part 1l (continued from Table5)

ST- Flat- _ HIVE-
HEsca BOSS DTW.F TSF TSBF LPS EE -7 OO
M. Pralne oo 69.11 7146 7011 7574 7007 7099 76.05 7850 8154
T PaAgeSIONL | 69.39 66.60 5809 67.65 67.25 5067 60.88 7223 7049
Mphalanx1w | 8151 80.82 7975 79.40 80.04 77.02 78.18 80.14 80.89
MoteStran | 57.93 53.74 5194 57.70 5682 5032 5251 58.69 57.12
NoninvasiveThoraxl | 88.23 8460 89.08 87.44 8864 91.65 8751 90.16 94.68
NoninvasiveThorax2 | 9468 84.09 87.67 88.05 84.24 80.69 8487 9292 93.17
gé'L‘J/EO'; 9539 9036 89.79 9144 8621 8259 91.39 9461 9523
Phalangesconggt 88.07 87.00 8637 88.30 8643 89.17 87.90 90.13 89.77
Phoneme | 9341 9674 8090 6366 67.81 7635 8116 9491 97.05
Plane | 79.45 8208 7929 80.43 8254 78.96 78.05 7828 82.12
P.PhalanxAgeGroup | 3291 2562 2197 2113 27.79 2449 2092 3620 3855
P.PhalanxCorrect | 99.96 99.79 ~ 99.58 99.41 99.32 99.95 100 100 100
ProximalPhalanxIW | g109 8190 8237 8456 8415 79.97 80.53 84.84 84.85
Re'rrlgeratlonDeVlces
ScreenType | 8809 8674 8286 8474 8612 8505 8389 87.09 87.63
ShapeletSim | 80.28 77.28 77.42 80.84 7982 7222 7591 8147 8116
ShapesAll | 76.08 7846 6563 6154 63.84 6755 6759 7423 80.1
smallKitchenApps | 67.61 58.60 49.90 57.28 5379 5059 5543 6513 711
igﬂ;ﬁ:ggsgggg 93.36 100 8878 50.99 9127 87.42 8273 9638 99.13
i ¢ 8542 90.88 7959 8001 8535 88.45 8859 91.07 92.59
S wberry | 8025 7502 7520 8126 6737 7237 7033 7878 8371
SwedishLeaf | 88.76 89.74 88.38 84.49 83.93 8418 7942 8991 88.68
Symbols | 92.44 8877 8586 8560 82.54 8510 87.01 9598 94.54
SyntheticControl | 9774 97.76 9596 96.87 97.77 96.83 9415 97.96 98.15
Pegegmemﬁ‘{:ogi 96.84 97.03 9698 9627 96.81 9635 9588 96.31 96.98
oevegmentanone | 9385 9177 8855 8920 90.78 9256 9159 96.67 96.86
TwoLeadECG | 86.16 9612 9300 8876 9443 9598 9574 9527 96.58
TwoPatterns | 98.69 9679 9858 99.03 9865 97.16 9940 99.92 99.96
UWwaveGestureAll | 9540 92.88 9220 66.10 8582 8412 78.76 9337 955
UWaveGesturex 9472 9597 90.38 7824 8858 92.64 90.70 9515 96.64
Ldvv\\//?\//eeg%ssttﬂrrg 99.99 99.99 99.74 99.80 98.14 96.65 99.60 99.99 100
Water | 9844 9845 9575 8422 9096 9279 9585 9825 99.35
wine | 9517 9912 99.95 99.05 9742 9669 100 99.98 99.99
WwordSynonyms | 9421 9445 9629 96.19 9437 9677 96.83 9648 96.98
worms | 8059 7532 80.63 80.64 8344 81.87 8047 8305 83.84
wormsTwoClass | 7370 66.12 71.66 7274 7457 7527 7305 7656 77.55
Yoga | 7468 6952 73.65 7408 77.60 76.65 72.63 7595 77.83
99.98 99.90 99.62 99.65 99.61 9951 99.60 99.94 99.97
9261 9117 8920 88.06 87.93 8843 8867 9035 91.20
5824 65.88 67.42 6435 6690 7281 77.84 7481 74.80
7195 7349 6734 6279 6684 6416 6444 7251 73.40
7787 8097 7300 6851 7549 7426 7174 7852 7839
8225 90.99 8635 8670 8345 87.37 8854 89.78 917
Average Accuracy | 83.80 83.35 8054 7958 79.87 7951 8119 8579 86.92
AverageRank 4.16 4.66 6.26 630 648 6589 580 284 161

Dataset

the actual series that we have used in experiments are shown in Figure 17alongside low-noise
comparisons.

To simulate whole series elastic data, a single shape defines the class, and the shape is stretched
between 10% and 100% of the total length for each series. For interval data, a single shape also
defines the class, but we place several much shorter versions at fixed locations so that there is a
high ratio of noise to shape. For shapelet data, a single short fixed-length shape defines the class,
and the shapelet is placed at a random location for every series of each class. For dictionary data, we
generate series using many repetitions of two shapes in random locations, and the discriminatory
feature defining class membership is the frequency that each shape appears. Finally, for spectral
problems we simulate data as described in Section6when motivating RISE. We create 200 two-
class problems with each simulator and evaluate 10 TSC algorithms over the 1000 datasets. We
include a brief summary of the simulation results, and a more detailed description of the simulators,

parameter settings, and results is available in (Bagnall et al.2016).

HIVE-COTE @ o ®
® o
Better Here P o0
) o e
®
0.9 e
! °
5 0.8 -
Q ® o
L [[]
= °« °
0.7 a
06 MCNN Better Here

0.6 0.7 0.8 0.9 1
MCNN Test Acc

Fig.16. Acomparisonofthetestaccuracies between HIVE-COTEand MCNN overthe 44 UCR datasetsused
by (Cuietal.2016). HIVE-COTE winson 30, MCNNwinson 11,and they tieon 3. The diKerence issignificant.

The classifiers we use are selected to be representative of each group of algorithm outlined in
Section2. Five classifiers are the individual modules from HIVE-COTE, and the remaining five
are included based on the experimental results in (Bagnall etal. 2016). First, we use two standard
benchmarks: Rotation Forest (Rodriguez etal. 2006) with 50 trees (RotF) and Dynamic Time Warping
(Ratanamahatana and Keogh2005) with window size set through cross-validation (DTW). Next, to
represent whole series techniques we use EE and HESCA. For interval-based similarity we use TSF,
and shapelet-based classification we use ST-HESCA. BOSS is used for dictionary-based similarity,
and our new ensemble RISE is used for classification in the spectral domain. Finally, Flat-COTE and
HIVE-COTE are both included to represent combinations of techniques. Our prior belief was that a
classifier from a given group would perform significantly better than all other algorithms on data
that was designed for that group. Specifically, we expected EE to be best on whole series/elastic
simulations, TSF on interval simulations, ST-HESCA on shapelet simulations, BOSS on dictionary
simulations, and RISE on spectral simulations. The goal of HIVE-COTE and Flat-COTE isto be able
to dynamically adjust to each type of discriminatory feature and perform well across all simulations.
The objective of these simulations is to answer three questions:

(1) Can the two COTE classifiers perform at least as well as the best in class classifier for a
given problem type?
(2) Is HIVE-COTE significantly more accurate than other approaches when we do not know
the origin of the data?
(3) Is HIVE-COTE significantly more accurate than Flat-COTE on these simulated TSC prob-
lems?
We have run 200 independent trials for each simulator by generating a random data set and per-

forming a random stratified split into train and test data. Any parameter optimisation is performed

(a) Whole Series (low noise)

'Vh\]*j\ '—I'J\‘I
e
e\l

(c) Interval (lownoise)

L s

SR o WO
NP

M«/““

(e) Shapelets (low noise)

(e
==t~
0 s) B

it

(g) Dictionary (lownoise)

(i) Spectral (lownoise)

(b) Whole Series (standard noise)

(d) Interval (standard noise)

e L
%WW’\:A
Ay
MVI\WW\M,N

(f) Shapelets (standardnoise)

O R

i b
e i L e e

b o

(h) Dictionary (standard noise)

(j) Spectral (standardnoise)

Fig.17. Examplesimulatedseries. Theleflcolumnincludesexampleswithlownoise (repeated from Section2)
and the right includes series generated with standard noise; the simulation experiments use standard noise
series to increase the complexity of the problems.

on the training data and we report accuracy results on the test data. The mean ranks, and the
relative ordering in brackets, are shown in Table7. The entries in bold are not significantly worse
than the best classifier. We use a Wilcoxon sign-rank test with o adjusted to 0.005to compensate
for multiple testing. It is worth noting that 200 is a relatively large sample size, and significance
results reported with a sign-rank test are identical to those found with a sign test, a paired t-test,
and a binomial test.

Table7. Resultsofthesimulationexeriments forall classifiers. Relative ranking of classifiersoneachisshown in
brackets. Results in bold font are not significantly worse than the best classifier on that simulated problem

type.

Elastic Interval Shapelet Dictionary Spectral
HIVE-COTE| 249 (1) 3.06(2) 2.26(2) 1.9 (1) 2.91(2)
Flat-COTE | 3.16(2) 3.5(3) 2.33(3) 2.55(3) 2.99(4)
ST-HESCA | 6.50(8) 3.67(4) 2.13(1) 4.96 (5) 2.98(3)
RISE 471(4) 825(9) 57(5) 4344 1.42(Q1)
BOSS 499(7) 7.59(8) 4.38(4) 2.54(2) 8.04(8)
TSF 486(5) 6.26(7) 6.42(7) 5.09(6) 6.5 (6)

EE 465(3) 552(5) 6.39(6) 7.75(8) 5.78 (5)
DTW 487(6) 9.85(10) 6.97(8) 7.21(7) 6.8 (7)
HESCA 890(9) 1.65(1) 9.1(9) 9.14(9) 8.8(10)
ROTF 9.88(10) 5.68(6) 9.33(10) 9.52(10) 8.79(9)

Our first observation is that HIVE-COTE is either the best or not significantly worse than the best
on three of simulations (Elastic, Shapelet and Dictionary). The two cases where it is significantly
worst than the best are interval and spectral simulators. These are best approached with HESCA
and RISE, but HIVE-COTE is the second best for each. This is broadly in line with our expectations,
but there are some unexpected features in these results. We summarise these below and address
these findings in more detail in (Bagnall et al.2016).

For elastic simulators, there is no significant difference between BOSS, DTW, TSF, RISE, and EE.
When we ensemble with Flat-COTE (which includes constituents from ST-HESCA and spectral
features) we get a significantly more accurate classifier, but HIVE-COTE (which also includes TSF
and BOSS) is significantly more accurate than Flat-COTE. This implies that the accuracies of the
constituents is to some degree inversely correlated, and that HIVE-COTE captures this diversity
to find a better classifier overall. It contradicts our prior beliefs and was initially surprising. On
refiection, we believe that this is caused by two confounding factors in the data: warping of the
shape and random noise. DTW and EE can compensate for warping but are confounded by noise.
BOSS, RISE and TSF all involve some form of averaging and smoothing and are thus better at
coping with random noise. Our conclusion is that is dangerous to put too much credence on prior
beliefs as to the best approach for a problem and that HIVE-COTE can to some degree remove the
need for this possible source of bias.

The interval simulator results are also surprising. Our expectation that TSF and RISE would be
the best was not born out by the results. The best classifier was in fact the ensemble of standard
classifiers, HESCA. The poor performance of TSF and RISE is likely caused by using intervals that
are too short. The relatively good performance of ST-HESCA is an artefact of the fact that each
class only uses a single shapelet over all intervals. This simulator could be better designed for
future experiments, as it is essentially just simulating a standard classification problem with a large

number of redundant features. However, it does provide supporting evidence for HESCA, which is

significantly more accurate than any of its components. We believe that heterogeneous ensembles
are an under-researched area. The interval simulation also reinforces our conclusion from the
whole series data, as HIVE-COTE effectively captures the diversity of ST and EE to improve overall.

The shapelet and dictionary results broadly confirmed our prior belief. ST-HESCA and BOSS
are the best approaches respectively, but HIVE-COTE is not significantly worse than either. The
spectral results were a little unexpected, in that HIVE-COTE is unable to compensate for the
confounding predictions of the components other than RISE. This suggests we should investigate
alternative fusion strategies in cases where there is a strong bias towards a single module within
the collective.

Our second question was whether HIVE-COTE is better when we do not know the origin of
the data. Our hypothesis is that HIVE-COTE will significantly outperform the other approaches
on data of unknown origin, doing so by steering classification decisions towards the correct
domains through its internal modular hierarchical structure. We can design an experiment to test
this hypothesis by randomly picking one of the five simulators and measuring performance over
multiple samples. However, we can simply achieve this effect by combining the 200 results from
the 5 individual simulator experiments into a single set of 1000 resamples. Figurel8shows the
pairwise critical difference diagram of the 10 classifeirs over the 1000 samples.

10987654321
e e el

|
RotF &74° 2431 HIVE-COTE
HESCA 7.55 2844 Flat—-COTE ST
DTW 71185 41755 p1SE BOSS
EE 6.0035 4.8215
TSF 5 709 5.602

Fig. 18. Average ranksand cliques for ten classifiers over 1000 simulations.

The main claim of this paper is that HIVE-COTE is significantly more accurate than other
classifiers, including Flat-COTE, for TSC problems. Figure18shows that both COTE approaches are
significantly more accurate when data can be generated from any of the simulators and answers our
second question in this section. Crucially however, these results also answer our third question, as
HIVE-COTE is significantly more accurate than Flat-COTE on simulated problems when we do not
know the source of the data. As is standard practice, we have focused exclusively on ranks for our
comparative analysis. However, variation in ranks can often be represented by tiny differences in
accuracy; this is not the case with these simulations. We summarise the variation in accuracy for the
classifiers in a boxplot of accuracies over all 1000 experiments (Figure19). The plot demonstrates
the relative stability of HIVE-COTE compares to the other algorithms.

8.4 CasesStudies
We have shown that HIVE-COTE represents a new state of the art for TSC onthe UCR/UEA TSC
problems, and we have also demonstrated how the collective and its internal modules perform on

o
©

]

°
3
T

Accuracy

o
o

o
(&)
T

;;#H;Tﬁﬁ
%

F44444444444444444

[—
|
|
|
|
|
|
|
|
|
|
|

£

—
|
|
|
|
|
|
|
|
£

o
i
T

|
|
|
|
|
|
|
4

RotF DTW EE HESCA TSF ST BOSS RISE FLAT HIVE

Fig. 19. Box plot of accuracies of ten classifiers over 1000 simulations.

five types of simulated problems. The following case studies demonstrate the versatility of HIVE-
COTE on new problems where we have no prior experimental knowledge of the best approaches

to use.

8.4.1 Non-intrusive Detection of Ethanol Level in Alcohol. Our first use case is the ethanol level
problem described in Section4.2. Our prior beliefs were that whole series methods would be
poor at this problem, as expert knowledge suggested that discriminatory information would only
be contained within a small window at the end of the series. This would lead us to anticipate
that shapelet and interval-based approaches would perform best. We designed a leave-one-bottle-
out experiment to avoid bias, and built each of the classifiers used previously in the simulation
experiments: HIVE-COTE, Flat-COTE, EE, ST-HESCA, TSF, BOSS, RISE, and we again include
HESCA, Rotation Forest, and DTW 1NN (with window set through CV) as baseline comparisons.
The average accuracy and standard deviation across all folds for each classifier is reported in Table8.

As anticipated, whole series approaches were poor; EE and DTW were no better than random
guessing on this four class problem. The vector-based rotation forest and HESCA both performed
very well. While this finding was initially suprising, it is perhaps to be expected given the static
nature of data in spectral problems. There is no opportunity for discriminatory features to be
shifted or occur in inconsistent locations when considering fixed wavelengths, making this TSC
problem share many similarities with the format of standard classification problems. The best
approach on this dataset however was ST-HESCA, though it was only marginally better than
HIVE-COTE. HIVE-COTE itself was over 2% more accurate than Flat-COTE; thisan interesting
resultasboth HIVE-COTE and Flat-COTE contain the classifiers from ST-HESCA, which was suited
to this problem, and EE, which was not suited to this problem. This is a good example of how the
modular hierarchy in HIVE-COTE is robust when internal classifiers are not optimal for a problem,
compensating much better than the fiat structure allows within Flat-COTE. Interestingly, the

interval-based TSF did not perform well on this problem. We believe this is due to the simple nature

Table8. Asummaryoftheresults ofthe leave-one-boNle-outethanol level problem. Classifiersare presented
in descending order ofaccuracy.

Classifier Avg Stdev
ST-HESCA |84.88% 0.096%
HIVE-COTE | 84.37% 0.084%
RotF 84.17% 0.114%
HESCA |83.87% 0.112%
Flat-COTE | 82.29% 0.078%
RISE 66.84% 0.112%
TSF 64.45% 0.160%
BOSS 51.98% 0.091%
EE 26.59% 0.068%
DTW 26.41% 0.069%

of the summary statistics that are calculated for each extracted interval, meaning the classifier
cannot fully capture the discriminatory information in such a short band for this problem.

8.4.2 Detecting the Occurrence of an Epileptic Fit through Motion Detection. Our second case
study is the epilepsy problem described in Section4.3. Our prior beliefs for this dataset were
that this problem would be more easily approached than the ethanol level problem, as the data
is seemingly suited to more approaches. We would expect dictionary, shapelet, and whole series
approaches all to be able to discover discriminatory features in this problem. Therefore, we expect
each to perform well, and the ensemble approaches to perform best through leveraging from the
performance of the constituent parts. We performed a leave-one-person-out experiment and report
the results in Table9.

Table9. Asummary oftheresults of the leave-one-person-outepilepsy problem. Classifiersare presented in
descending order ofaccuracy.

Classifier Avg Stdev
HIVE-COTE | 99.27% 0.010
Flat-COTE |99.27% 0.014
RISE 98.55% 0.024
BOSS 97.82% 0.041
ST-HESCA | 95.64% 0.029
EE 94.91% 0.057
DTW 93.09% 0.064
RotF 89.45% 0.063
TSF 84.36% 0.143
HESCA | 78.91% 0.116

As anticipated, many approaches reported strong results on this problem. HIVE-COTE and
Flat-COTE were equally best, getting only 2/275 instances incorrect. A stand-out result however is
RISE; the random spectral interval approach worked much better than anticipated on this problem.
Itis in direct contrast to the time domain-based interval approach, TSF, beating it by over 14%
across all data. Though there is no clear discriminatory interval in the data, it would appear that

the trees in RISE combine well to capture the spectral features across many intervals.

8.4.3 Vowel Classification from Raw Audio. Our final use case experiments focus on the vowel
problem described in4.4. Though DTW originally came from the speech field before being applied
to TSC problems, we would not expect it (or EE) to perform best on this problem due to the
possibility of the previous/next term being included at the start/end of the series. Shapelet-based
classification should therefore have an advantage, and we would also expect RISE to perform well
too. Itis common to apply spectral transforms to speech data, and this coupled with the fact that
RISE creates intervals means that it should be able to extract discriminatory information without
being confounded by noise at the start or end of the series. Unlike the previous case studies, the
data does not need to be cut specifically to avoid bias as as all utterances were recorded by a single
speaker. Therefore we can create a standard train/test split and perform seeded stratified resample
experiments. We also plan to include the vowel problem in future releases of the UCR/UEA datasets.
TablelOreports the results of running 100 resample experiments.

Table 10. Asummary of the results of the vowel problem over 100 resamples. Classifiers are presented in
descending order ofaccuracy.

Classifier Avg Stdev
RISE 94.93% 0.025
HIVE-COTE | 93.26% 0.023
ST-HESCA | 90.80% 0.032
Flat-COTE | 90.26% 0.033
BOSS 80.11% 0.037
EE 72.14% 0.044
DTW 68.57% 0.044
TSF 33.64% 0.042
HESCA | 25.55% 0.038
RotF 24.23% 0.037

RISE was the best performing classifier on this problem. This was expected, but it is perhaps
surprising to get almost 95% accuracy with no parameter optimisation or preprocessing, especially
given that we only retained 10% of the original data from the 50kHz recordings. To further investigate
this result and determine whether it is simply just a problem well suited to spectral approaches,
we also ran PS-HESCA and ACF-HESCA for context. These classifiers reported 77.4% and 68.9%
respectively. This clearly demonstrates that RISE fills a niche in TSC that current spectral approaches
do not address. We believe that this is because the interval aspect of RISE mitigates against potential
noise at the start and end of the series, but it could also be the interaction between ACF and PS
features within the same classifier.

Finally, Table10shows that HIVE-COTE also achieves high accuracy on this problem; it is second
overall and outperforms Flat-COTE by 3%. This is even more impressive when considering that
HIVE-COTE contains TSF, which reported only 33.6%. Even with TSF included, the hierarchical
structure of HIVE-COTE is able to leverage from the strong performances of RISE and ST-HESCA
without being mislead by TSF. The performance of HIVE-COTE across all three of these case study
datasets underlines the robustness of the new hierarchical structure and the performance of the
new classification modules. HIVE-COTE is at least in the top two classifiers on these use cases,
and where it is beaten, it is only marginally outperformed by one of its own modules (RISE or

ST-HESCA).

9 CONCLUSIONS AND FUTURE DIRECTION

We set out to address two key questions. First, is the existing state of the art, Flat-COTE, significantly
more accurate than current deep learning approaches for TSC? We answer this question by compar-
ing Flat-COTE to two deep learning approaches: a benchmark CNN that we implemented ourselves
and a TSC-specific CNN from the literature. Our analysis shows that Flat-COTE outperforms both.
Flat-COTE is significantly more accurate than the standard CNN over 85 UCR/UEA datasets and
significantly more accurate than the TSC-specific CNN over the 44 datasets reported in (Cui et al.
2016). These findings motivate our second question; can we improve on Flat-COTE and make
asignificantly more accurate collective? We introduce HIVE-COTE, a new meta-ensemble with
updated constituent classifiers and an encapsulated hierarchical structure. HIVE-COTE contains
classifiers that can detect five types of discriminatory features: whole series, shapelet, dictionary,
interval, and spectral. As part of HIVE-COTE we formally define a heterogeneous ensemble of
standard classification algorithms (HESCA) that we pair with shapelet-transformed problems, and a
novel random interval spectral ensemble (RISE) that we demonstrate is significantly more accurate
than existing spectral approaches. Classifiers built in each of the five domains within HIVE-COTE
are encapsulated in modules, and modules are combined through a hierarchical probabilistic voting
structure. Through extensive experimentation on 100 resamples of 85 public datasets, 5 types of
simulated data, and 3 new case studies, we demonstrate that HIVE-COTE is significantly more
accurate than all alternatives for TSC, including Flat-COTE. Tothe best of our knowledge, HIVE-
COTE is the most accurate published TSC algorithm. We release all source code for our algorithms
and experiments, and encourage the community to contribute to this ever-expanding resource.
Inaddition to refinements that we could still make to HIVE-COTE, such as exponential voting
schemes or weighting predictions by class, the promising results of RISE and HESCA both suggest
that further work could lead to advancement of these algorithms. We have not evaluated which
constituents we should include in HESCA, nor have we optimised parameter settings for any of
the internal classifiers (with the exception of 1-NN where there is minimal cost to do so). We have
also not optimised the number of intervals/base classifiers to include in RISE, or whether we could
include different combinations of features other than ACF and PS. It seems likely that we would be
able torefine and extend these constituents within HIVE-COTE, which would also contribute toa
more effective collective overall. Finally, the complexity of HIVE-COTE may make the approach
prohibitive in use cases where real time classification is required on low-powered computing
equipment. Therefore a further future research direction is to investigate whether the runtime of
HIVE-COTE may be significantly reduced without a significant reduction in the accuracy of the
approach. This could be tackled both theoretically through runtime complexity comparisons, or
more practically through an evaluation of experimental runtimes between algorithms. This would
generate further research questions to ensure any wallclock comparisons were conducted in a fair
environment, but results of such a study would likely be of great benefit to practitioners in the field.

CODE AND DATAACCESS

All code and data used in this work is open source and freely available from ® and ®. The source
code is implemented in Java to extend the Weka Machine Learning Toolkit (Hall et al. 2009) and an
example use case with acommon TSC problem is given in the main method of the HIVE-COTE
class. An interested researcher can run this classifiers on standard commodity hardware using any
TSC problem formatted in Weka’s Attribute Relation Format File type.

SUCR/UEA TSC Repository:www .timeseriesclassification.com
BUEA TSC Code Base:bitbucket .org/TonyBagnall/time-series-classification

http://www.timeseriesclassification.com/

ACKNOWLEDGEMENTS

Thiswork is supported by the UK Engineering and Physical Sciences Research Council (EPSRC)
[grant numbers EP/M015087/1 and EP/M014053/1]. The experiments were carried out on the High
Performance Computing Cluster supported by the Research and Specialist Computing Support
service at the University of East Anglia. We also gratefully acknowledge the support of the NVIDIA
Corporation with the donation of a Titan X GPU that was used for running the CNN experiments
in this work. Finally, the authors would also like to thank James Large for recording the Ethanol
Level problem used in this work.

REFERENCES

A. Bagnall, A. Bostrom, J. Large, and J.Lines. 2016. Simulated Data Experiments for Time Series Classification Part 1: Accuracy
Comparison with Default Settings. Technical Report. School of Computing Sciences, University of East Anglia.

A. Bagnall, L. M. Davis, J. Hills, and J. Lines. 2012. Transformation Based Ensembles for Time Series Classification.. In

Proceedings of the 2012 SIAM International Conference on Data Mining, Vol. 12. 307-318. L .
A. Bagnall and G. Janacek. 2014. A run length transformation for discriminating between auto regressive time series. Journal

of Classification 31 (2014), 154-178. Issue 2.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. 2016. The Great Time Series Classification Bake Off: a Review and
Experimental Evaluation of Recent Algorithmic Advance. Data Mining and Knowledge Discovery (2016), 1-55.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom. 2015. Time-Series Classification with COTE: The Collective of Transformation-

Based Ensembles. IEEE Transactions on Knowledge and Data Engineering 27_$20_15), 2522-2535. Issue 9.))
G. Batista, E. Keogh, O. Tataw, and V. deSouza. 2014. CID: an e@cient complexity-invariant distance measure for time series.

Data Mining and Knowledge Discovery 28, 3 (2014), 634—669.

M. Baydogan and G. Runger. 2016. Time series representation and similarity based on local autopatterns. Data Mining and
Knowledge Discovery 30, 2 (2016), 476-5009.

M. Baydogan, G. Runger, and E. Tuv. 2013. A Bag-of-Features Framework to Classify Time Series. IEEE Transactions on

Pattern Analysis and Machine Intel_ligzence 25,11 (2013&,279672802.
A. Benavoli, G. Corani, and F. Mangili. 2016. Should We Really Use Post-Hoc Tests Based on Mean-Ranks? Journal of

Machine Learning Research 17 (2016), 1-10.

A. Bostrom and A. Bagnall. 2015. Binary Shapelet Transform for Multiclass Time Series Classification. In Proc. 17th
International Conference on Big Data Analytics and Knowledge Discovery (DAWAK).

L. Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123-140.

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32. . o . o
J. Caiado, N. Crato, and D. Pena. 2006. A periodogram-based metric for time series classification. Computational Statistics

and Data Analysis 50 (2006), 2668-2684.
M. Cooke, J. Barker, S. Cunningham, and X. Shao. 2006. An audio-visual corpus for speech perception and automatic speech
recognition. The Journal of the Acoustical Society of America 120, 5 (2006), 2421-2424.

M. Corduas and D. Piccolo. 2008. Time series clustering and classification by the autoregressive metric. Computational

Statistics and Data Analysis 52, 4 (2008), 1860-1872. . . o
Z. Cui, W. Chen, and Y. Chen. 2016. Multi-Scale Convolutional Neural Networks for Time Series Classification.

arXiv:1603.06995 (2016).

J. Demgar. 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7
(2006), 1-30.

H. Deng, G. Runger, E. Tuv, and M. Vladimir. 2013. A time series forest for classification and feature extraction. Information
Sciences 239 (2013), 142-153.

Y. Fand R. Schapire. 1996. Experiments with a new boosting algorithm. In icml, Vol. 96. 148-156.

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. 2014. Do we Need Hundreds of Classifiers to Solve Real
World Classification Problems? Journal of Machine Learning Research 15 (2014), 3133-3181.

B. Fulcher and N. Jones. 2014. Highly comparative feature-based time-series classification. IEEE Transactions on Knowledge

and Data Engineering 26, 12 (2014), 3026-3037. =
S. Garciaand F. Herrera. 2008. An Extension on 4AIJStatistical Comparisons of Classifiers over Multiple Data SetsaAl for all
Pairwise Comparisons. Journal of Machine Learning Research 9 (2008), 2677—2694.

T. Gorecki and M. Luczak. 2014. Non-isometric transforms in time series classification using DTW. Knowledge-Based
Systems 61 (2014), 98-108.

J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. 2014. Learning Time-Series Shapelets. In Proc. 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. In 2013 IEEE
international conference on acoustics, speech and signal processing. IEEE, 6645-6649.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and |. Witten. 2009. The WEKA Data Mining Software: An
Update. SIGKDD Explorations 11, 1 (2009), 10-18.
J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. 2014. Classification of time series by shapelet transformation.

Data Mining and Knowledge Discovery 28, 4 (2014), 851-881.

Y.Jeong, M. Jeong, and O. Omitaomu. 2011. Weighted dynamic time warping for time series classification. Pattern Recognition
44 (2011), 2231-2240. Issue 9.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. 2014. A convolutional neural network for modelling sentences.
arXiv:1404.2188 (2014).

R. Kate. 2016. Using dynamic time warping distances as features for improved time series classification. Data Mining and
Knowledge Discovery 30, 2 (2016), 283-312.

A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems 25. Curran Associates, Inc., 1097-1105.

J. Lin, R. Khade, and VY. Li. 2012. Rotation-invariant similarity in time series using bag-of-patterns representation. Journal of
Intelligent Information Systems 39, 2 (2012), 287-315.

J. Lines and A. Bagnall. 2015. Time Series Classification with Ensembles of Elastic Distance Measures. Data Mining and
Knowledge Discovery 29 (2015), 565-592. Issue3.

J. Lines, L. Davis, J. Hills, and A. Bagnall. 2012. A Shapelet Transform for Time Series Classification. In Proc. the 18th ACM
SIGKDD International Conference on Knowledge Discovery and DataMining.

J. Lines, S. Taylor, and A. Bagnall. 2016. HIVE-COTE: The Hierarchical VVote Collective of Transformation-based Ensembles
for Time Series Classification. In Proc. IEEE International Conference on Data Mining.

P. Marteau. 2009. Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence 31, 2 (2009), 306-318.

C. Ratanamahatana and E. Keogh. 2005. Three Myths about Dynamic Time Warping Data Mining. In Proc. 5th SIAM
International Conference on Data Mining (SDM).

Juan José Rodriguez, Ludmila | Kuncheva, and Carlos J Alonso. 2006. Rotation forest: A new classifier ensemble method.
IEEE transactions on pattern analysis and machine intelligence 28, 10 (2006), 1619-1630.

P. Schafer. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge
Discovery 29, 6 (2015), 1505-1530.

A. Stefan, V. Athitsos, and G. Das. 2013. The Move-Split-Merge Metric for Time Series. IEEE Transactions on Knowledge and
Data Engineering 25, 6 (2013), 1425-1438.

Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical expressions. arXiv
e-prints abs/1605.02688 (2016).

J. Villar, P. Vergara, M. Menéndez, E. de la Cal, V. Gonzélez, and J. Sedano. 2016. Generalized Models for the classification
of abnormal movements in daily life and its applicability to epilepsy convulsions recognition. International Journal of

Neural Systems (2016). . -
G. Webh. 2000. Multiboosting: A technique for combining boosting and wagging. Machine learning 40, 2 (2000), 159-196.

L. Yeand E. Keogh. 2011. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification.
Data Mining and Knowledge Discovery 22, 1-2 (2011), 149-182.

