1,206 research outputs found

    Interactive 3-D Visualization: A tool for seafloor navigation, exploration, and engineering

    Get PDF
    Recent years have seen remarkable advances in sonar technology, positioning capabilities, and computer processing power that have revolutionized the way we image the seafloor. The massive amounts of data produced by these systems present many challenges but also offer tremendous opportunities in terms of visualization and analysis. We have developed a suite of interactive 3-D visualization and exploration tools specifically designed to facilitate the interpretation and analysis of very large (10\u27s to 100\u27s of megabytes), complex, multi-component spatial data sets. If properly georeferenced and treated, these complex data sets can be presented in a natural and intuitive manner that allows the integration of multiple components each at their inherent level of resolution and without compromising the quantitative nature of the data. Artificial sun-illumination, shading, and 3-D rendering can be used with digital bathymetric data (DTM\u27s) to form natural looking and easily interpretable, yet quantitative, landscapes. Color can be used to represent depth or other parameters (like backscatter or sediment properties) which can be draped over the DTM, or high resolution imagery can be texture mapped on bathymetric data. When combined with interactive analytical tools, this environment has facilitated the use of multibeam sonar and other data sets in a range of geologic, environmental, fisheries, and engineering applications

    ProblĂšmes sociaux et service social

    Get PDF

    Advanced Mid-Water Tools for 4D Marine Data Fusion and Visualization

    Get PDF
    Mapping and charting of the seafloor underwent a revolution approximately 20 years ago with the introduction of multibeam sonars -- sonars that provided complete, high-resolution coverage of the seafloor rather than sparse measurements. The initial focus of these sonar systems was the charting of depths in support of safety of navigation and offshore exploration; more recently innovations in processing software have led to approaches to characterize seafloor type and for mapping seafloor habitat in support of fisheries research. In recent years, a new generation of multibeam sonars has been developed that, for the first time, have the ability to map the water column along with the seafloor. This ability will potentially allow multibeam sonars to address a number of critical ocean problems including the direct mapping of fish and marine mammals, the location of mid-water targets and, if water column properties are appropriate, a wide range of physical oceanographic processes. This potential relies on suitable software to make use of all of the new available data. Currently, the users of these sonars have a limited view of the mid-water data in real-time and limited capacity to store it, replay it, or run further analysis. The data also needs to be integrated with other sensor assets such as bathymetry, backscatter, sub-bottom, seafloor characterizations and other assets so that a “complete” picture of the marine environment under analysis can be realized. Software tools developed for this type of data integration should support a wide range of sonars with a unified format for the wide variety of mid-water sonar types. This paper describes the evolution and result of an effort to create a software tool that meets these needs, and details case studies using the new tools in the areas of fisheries research, static target search, wreck surveys and physical oceanographic processes

    Increasing Reflection Coherency Through Improved Statics Corrections: An Iterative Tomographic Approach

    Get PDF
    Computation and application of statics corrections have always been problematic on CMP reflection data, especially in highly weathered and structurally altered environments. Tomographic estimation of the velocity field within the weathered layer is a severely underdetermined problem, only to be exacerbated by the lack of a priori information of most survey sites. Statistically driven static techniques are sometimes considered implausible for specific subsurface conditions where compensating for severe static problems is necessary. Using turning-ray tomography to make static corrections (tomostatics) and iteratively developing the best tomographic model based on site-specific reflection arrivals will ultimately optimize the static correction for each source and receiver station. Cross-correlation statics routines that monitored changes in specific near-surface reflections during iterative application of tomostatics guided the selection of the best initial model. Combining statistical techniques with geologically based models of the subsurface increased the overall reflection coherency and accuracy of the final stacked section

    Gendered nationalism : the gender gap in support for the Scottish National Party

    Get PDF
    Recent major surveys of the Scottish electorate and of Scottish National Party (SNP) members have revealed a distinct gender gap in support for the party. Men are markedly more likely than women to vote for the SNP and they comprise more than two-thirds of its membership. In this article, we use data from those surveys to test various possible explanations for the disproportionately male support for the SNP. While popular accounts have focused on the gendered appeal of recent leaders and on the party’s fluctuating efforts at achieving gender equality in its parliamentary representation, we find much stronger support for a different explanation. Women are less inclined to support and to join the SNP because they are markedly less supportive of its central objective of independence for Scotland. Since men and women barely differ in their reported national identities, the origins of this gender gap in support for independence presents a puzzle for further research

    vbyCaHbeta CCD Photometry of Clusters. VIII. The Super-Metal Rich, Old Open Cluster NGC 6791

    Get PDF
    CCD photometry on the intermediate-band vbyCaHbeta system is presented for the metal-rich, old open cluster, NGC 6791. Preliminary analysis led to [Fe/H] above +0.4 with an anomalously high reddening and an age below 5 Gyr. A revised calibration between (b-y)_0 and [Fe/H] at a given temperature shows that the traditional color-metallicity relations underestimate the color of the turnoff stars at high metallicity. With the revised relation, the metallicity from hk and the reddening for NGC 6791 become [Fe/H] = +0.45 +/- 0.04 and E(b-y) = 0.113 +/- 0.012 or E(B-V) = 0.155 +/- 0.016. Using the same technique, reanalysis of the photometry for NGC 6253 produces [Fe/H] = +0.58 +/-0.04 and E(b-y) = 0.120 +/- 0.018 or E(B-V) = 0.160 +/- 0.025. The errors quoted include both the internal and external errors. For NGC 6791, the metallicity from m_1 is a factor of two below that from hk, a result that may be coupled to the consistently low metal abundance from DDO photometry of the cluster and the C-deficiency found from high dispersion spectroscopy. E(B-V) is the same value predicted from Galactic reddening maps. With E(B-V) = 0.15 and [Fe/H] = +0.45, the available isochrones predict an age of 7.0 +/- 1.0 Gyr and an apparent modulus of (m-M) = 13.60 +/- 0.15, with the dominant source of the uncertainty arising from inconsistencies among the isochrones. The reanalysis of NGC 6253 with the revised lower reddening confirms that on both the hk and m_1 metallicity scales, NGC 6253, while less than half the age of NGC 6791, remains at least as metal-rich as NGC 6791, if not richer.Comment: Accepted for Astronomical Journal. 42 p. latex file includes 11 figures and 3 tables, one of which is a short version of a data table to appear in online AJ in its entiret

    Towards 3D printed multifunctional immobilization for proton therapy: initial materials characterization

    Get PDF
    Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-speci c structure. In this rst step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four di erent 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominal dimension of 20×20×80 mm3 were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the e ect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρe, the e ective atomic number Ze , and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coe cients, while proton irradiations were performed to measure the proton range shift of the samples. The direc- tional dependence of these properties was investigated by performing the irradiations for di erent orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Ze ranging from 5.91 to 10.43. The SPR and ρe both ranged from 0.6 to 1.22. The measured photon attenuation coe cients at clinical energies scaled linearly with ρe. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Ze . As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the rst step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical work ow for the rst time: from the material printing to DECT characterization with a veri cation through beam measurements. Besides a proof of concept for beam modi cation, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy

    Tracing molybdenum attenuation in mining environments using molybdenum stable isotopes

    Get PDF
    Molybdenum contamination is a concern in mining regions worldwide. Better understanding of processes controlling Mo mobility in mine wastes is critical for assessing potential impacts and developing water-quality management strategies associated to this element. Here, we used Mo stable isotope (ή98/95Mo) analyses to investigate geochemical controls on Mo mobility within a tailings management facility (TMF) featuring oxic and anoxic environments. These isotopic analyses were integrated with X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and aqueous chemical data. Dissolved Mo concentrations were inversely correlated with ή98/95Mo values such that enrichment of heavy Mo isotopes in solution reflected attenuation processes. Inner-sphere complexation of Mo(VI) with ferrihydrite was the primary driver of Mo removal and was accompanied by a circa 1 ‰ isotope fractionation. Limited Mo attenuation and isotope fractionation was observed in Fe(II)- and Mo-rich anoxic TMF seepage, while attenuation and isotope fractionation were greatest during discharge and oxidation of this seepage after discharge into a pond where Fe-(oxyhydr)oxide precipitation promoted Mo sorption. Overall, this study highlights the role of sorption onto Fe-(oxyhydr)oxides in attenuating Mo in oxic environments, a process which can be traced by Mo isotope analyses

    COTSAT Small Spacecraft Cost Optimization for Government and Commercial Use

    Get PDF
    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The prototype spacecraft, also known as CheapSat, is the first of what could potentially be a series of rapidly produced low-cost spacecraft. The COTSAT-1 team is committed to realizing the challenging goal of building a fully functional spacecraft for 500Kpartsand500K parts and 2.0M labor. The project's efforts have resulted in significant accomplishments within the scope of a limited budget and schedule. Completion and delivery of the flight hardware to the Engineering Directorate at NASA Ames occurred in February 2009 and a cost effective qualification program is currently under study. The COTSAT-1 spacecraft is now located at NASA Ames Research Center and is awaiting a cost effective launch opportunity. This paper highlights the advancements of the COTSAT-1 spacecraft cost reduction techniques
    • 

    corecore