
COTSAT

Small Spacecraft Cost Optimization for

Government and Commercial Use

Aaron J. Swank

David Bui, Christopher Dallara, Shakib Ghassemieh, James Hanratty

Evan Jackson, Pete Klupar, Michael Lindsay, Kuok Ling, Nicholas Mattei,

David Mayer, Emmett Quigley, Stevan Spremo∗, Zion Young

NASA Ames Research Center, Moffett Field, CA 94035, USA

Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing
spacecraft research and development project at NASA Ames Research Center (ARC). The
prototype spacecraft, also known as CheapSat, is the first of what could potentially be
a series of rapidly produced low-cost spacecraft. The COTSAT-1 team is committed to
realizing the challenging goal of building a fully functional spacecraft for $500K parts and
$2.0M labor. The project’s efforts have resulted in significant accomplishments within the
scope of a limited budget and schedule. Completion and delivery of the flight hardware to
the Engineering Directorate at NASA Ames occurred in February 2009 and a cost effective
qualification program is currently under study. The COTSAT-1 spacecraft is now located
at NASA Ames Research Center and is awaiting a cost effective launch opportunity. This
paper highlights the advancements of the COTSAT-1 spacecraft cost reduction techniques.

I. Introduction

Figure 1. COTSAT Solid Model

Cost Optimized Test of Spacecraft Avionics and Tech-
nologies, COTSAT-1, is a rapid prototype, low-cost space-
craft for science experiments and technology demonstration.
The spacecraft platform is designed to accommodate low-
cost access to space for variable remote-sensing payloads,
while maintaining an architecture allowing future expansion
for potential biological payloads. COTSAT-1 is a ∼ 400 kg
small spacecraft that is baselined to accommodate a remote
sensing instrument as the primary payload. The primary
objective for a COTSAT-1 mission is to rapidly deploy a
spacecraft with a minimum six month reliable-performance
period. The goal of COTSAT-1 as a technology demon-
stration unit is to demonstrate the ability for drastic cost
reduction in spacecraft design and to develop methods and
technologies for maximizing reuse of developed spacecraft
hardware, software and related technology on future mis-
sions. The developmental cost of the spacecraft platform
is significantly reduced by housing the bus and payload subsystems in a single-atmosphere, artificial
environment. This concept has been proven with the first man-made satellite, Sputnik, developed by the
former Soviet Union.6 Other Soviet sealed environment spacecraft have been designed and flown successfully.
This heritage design attracted the interest of ARC because of dramatic cost reduction possibilities.

∗Corresponding author.

1 of 8

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20100027342 2019-08-30T10:23:12+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/10554839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. Cost Reduction and Technology Reuse

Many of the advancements in overall cost reduction for COTSAT-1 can be attributed to the use of the one-
atmosphere pressurized structure to house spacecraft components. For example, the artificial environment
makes it readily feasible for incorporating a wide array of pre-built hardware, including Commercial Off
The Shelf (COTS), Modified Off The Shelf (MOTS) and Government Off The Shelf (GOTS) hardware.
Hybridizing a one-atmosphere pressure vessel with current COTS technologies allows for subsystem cost
reduction, in most cases, by orders of magnitude.3 By using COTS hardware, the spacecraft program can
utilize investments already made by commercial vendors. Indeed, COTSAT-1 makes extensive use of COTS,
MOTS, and GOTS hardware to save on development time and cost. Where possible, COTSAT-1 also
incorporates industry data interface standards such as USB 2.0 and Ethernet for reduced development
and integration time of the COTS components. When inexpensive COTS hardware solutions are not
readily available, subsystems are designed and developed in-house at ARC. In-house developed hardware
for COTSAT-1 includes for example the reaction wheels, star tracker and electrical power systems.

Proper design of the software architecture for COTSAT-1 has additionally proved to generate significant
cost reduction through simplified development and integration time. As noted by Wilmot:7 “an obvious way
to reduce cost and schedule is to increase the amount of software reuse.” Indeed, the COTSAT-1 project
utilizes GNU/Linux and open source software for reduced development time and increased code reuse. The
amount of software reuse is increased on COTSAT-1 by leveraging off of existing software libraries and device
drivers already written for COTS electronics. In some cases, minor modifications to the open source or
industry supplied software drivers were necessary to simplify integration or to add desired features. However
this approach has still proven to be effective and significant in cost reduction, compared to a completely new
development and testing effort.

III. Structure

Figure 2. Artificial Atmosphere Container

A key design characteristic of COTSAT-1 for cost re-
duction and reduced development time is the single atmo-
sphere, artificial environment which encompasses the vast
majority of the satellite components. An artificial environ-
ment container, which comprises much of the satellite struc-
ture, is used to contain the single atmosphere environment.
Refer to Figure 2 for a graphical depiction of the structure
comprising the artificial environment container. During
integration, the container is filled with one-atmosphere
standard laboratory air. The artificial atmosphere con-
tainer is used to replicate an Earth-like atmosphere, al-
lowing the use of COTS hardware and electronics which
were not necessarily originally designed to operate in the
vacuum environment of space. The artificial atmosphere
environment additionally allows for heat transfer within a
convective medium aiding in heat distribution. The air
within the container aids in transferring heat from hot
electronics or heaters to cooler portions of the spacecraft.
Two fans move air within the container to promote an
isothermal gaseous environment for electronics, extending
overall spacecraft subsystem lifetime.

The sealed container is comprised of an aluminum cylinder with monolithic aluminum end-plates at each
end. The cylindrical portion of the sealed container is primarily fabricated from rolled-and-welded sheet
aluminum and features longitudinal ribs and billet flanges. These ribs help prevent structural failure in
modes including axial loading, acoustics, and buckling; additionally, these ribs provide attachment points for
an otherwise void round surface. Both end-plates feature an external waffle grid pattern to provide a stiff,
yet lightweight structure capable of heat dissipation for any thermally sensitive components. On the reverse
side, a grid of blind threaded holes is provided to allow for non-specific, modular avionics equipment buildup
within the container. The aft end-plate is designed to mate with the launch vehicle separation system.

2 of 8

American Institute of Aeronautics and Astronautics

IV. Electrical Power Subsystem

The COTSAT-1 Electrical Power System (EPS) architecture utilizes a distributed power and self-monitor
approach. The distributed power and self-monitor approach is adapted from GeneSat-1 and allows for
the reuse of all systems for future missions without major redevelopment.2 The distributed power ar-
chitecture provides methods for mitigating Single Event Upsets (SEUs) or latch-ups without compromis-
ing the entire system. The highly configurable system contains two major elements: the Central Power
Controller (CPC) and up to 32 Remote Power Controllers (RPC’s). The CPC contains a microprocessor
to perform centralized power control for the entire spacecraft and additionally monitors system health.

Figure 3. Electrical Power System

The CPC receives voltage and current monitoring signals
from each RPC allowing the CPC to implement active
software control for detection and mitigation of SEUs or
latch-ups experienced by on-orbit radiation. Each RPC is
responsible for regulating voltage and safely limiting cur-
rent from an unregulated power source. Current monitoring
circuitry on the RPC will automatically disable the power
regulator on the RPC should a latch-up incident, failure,
short or open circuit occur. After a preconfigured delay, the
circuitry resets the device and attempts to restore power.
The architecture allows for dual string redundancy for
mitigation, isolation, and recovery from component failure.
Additional details on the CPC and RPC architecture are
found in Spremo et al.4,3

V. Command and Data Handling

The command and data handling (C&DH) subsystem provides a number of critical capabilities, including
spacecraft health and status monitoring, communication, payload science data management and subsystem
management. The C&DH subsystem for COTSAT-1 uses a two-tiered system consisting of the CPC and
a PC-104 computer. The CPC is the system master controller and is designed to perform a limited set of
essential tasks with simplicity and robustness in mind. In addition to basic power management capabilities,
the CPC handles essential survival functions of the satellite, including system health, problem mitigation
and communication. The CPC is responsible for primary command and data handling for communication
with the ground station. The CPC interfaces with a PC-104 computer via an RS232 communication link and
utilizes this channel to relay commands and system status information. This interface allows for commands
to be sent, processed, and executed by the PC-104 system. The PC-104 computer handles all complex tasks
such as star tracker attitude estimation, attitude control system tasks, payload image processing, payload
data storage, and high data rate down-link communication.

The C&DH architecture for the PC-104 utilizes standard Ethernet UDP with acknowledgement or
TCP/IP to communicate between the flight computer executive and each of the essential satellite subsystems.
Subsystem communication functions as an on-board subscribe & publish communications network. Any
subsystem which requires spacecraft attitude information need only to subscribe to the information provided.
From subsystem to hardware, any number of protocols may be used, depending on the designed hardware
interface, for example USB, Ethernet, TTL, RS232 or RS422. Although the the actual hardware device
may be connected via different communications protocols, for example a serial communications link, the
PC-104 flight software treats each subsystem as a device connected via Ethernet and a software daemon
is responsible for translating data packets to the proper protocol required for the destination device. For
COTSAT-1 hardware, USB and Ethernet interfaces were preferred due to available hot-plugging capabilities
and ease of integration. The Ethernet architecture for command and data handling provides a number of
benefits in the system design. For example, the Ethernet architecture generates a design capable of easy
subsystem reuse, thereby providing cost reduction for a series of missions. The Ethernet architecture also
has the benefit of allowing for combined simulation/hardware in the loop testing and verification. With
a Ethernet connection, the various satellite subsystems may be running on various distributed systems
connected only by a network. In one instance a software developer was testing control algorithm routines
on a local desktop workstation in one room, while accessing actual hardware sensors on the development

3 of 8

American Institute of Aeronautics and Astronautics

test-bed in another room. This methodology aided in parallel software development and testing as well as
verified the capability of remotely running simple development tests without physically entering a clean room
facility, where the flight hardware would be located. The Ethernet-based architecture therefore provides the
foundation for the ultimate FlatSat, namely a distributed network of hardware devices, subsystem assemblies,
or even inexpensive desktop workstations. For COTSAT-1, hardware simulators were used to aid in parallel
software development. These hardware simulators were software daemons on the PC-104 or a desktop
workstation, which receives and responds to Ethernet packets. Having designed the subsystem interfaces to
support Ethernet, it was easy to observe system response to anomalies or abnormal behavior both with and
without actual hardware present. Simply by creating the proper Ethernet data packet, one could inject any
desired hardware response to the system being tested. As a result, the Ethernet architecture allowed for
rapid development and verification of desired performance characteristics.

COTSAT-1 utilizes USB 2.0 to interface with a number of the satellite hardware devices, including for
example the IMU and star trackers. One benefit of utilizing USB, is that the udev system available on
GNU/Linux provides a foundation for hot swappable or plug and play hardware. Udev is a device manager
daemon providing for dynamic device addition and removal to the system. The developer may also write
udev rules for the system to perform when a new device is initialized or removed from the system. The
COTSAT-1 software developers have utilized the udev system for identifying and hot-plugging hardware.
For example, a udev rule was written for the USB IMU and star trackers. Upon recognition of the device
to the operating system, the hardware manufacturer and serial number was identified via udev to determine
the proper associated hardware configuration parameters specific to the satellite layout. Similarly, based
on the hot-plugging of devices and recognition via udev, the system utilizes the available resources. For
instance, there are multiple star tracker units present in the system as well as two IMU’s. In the case of the
star trackers, the subsystem default behavior is to utilize the maximum number of available star trackers
for attitude determination. Alternatively, the subsystem may be instructed to utilize a specified number
of star trackers to reduce overall system load. When attitude information is queried from the star tracker
subsystem, the software intelligently combines the most recent set of quaternion estimates from the available
star trackers to determine the satellite attitude. In the case of the IMU, the system defaults to the first
available IMU device, yet the information may also be requested from a specific hardware device.

COTSAT-1 utilizes IP addressable radios for primary bidirectional data communication via the PC-104
flight computer. Data transfer from the communications subsystem to the communications radio is therefore
performed via an Ethernet link. Sending data packets to any communications radio, or even a ground
station, is a simple matter of rerouting Ethernet packets to a different destination address/port. It is worth
noting that the Ethernet interface also supports hot-plugging of devices. For COTSAT-1 Ethernet devices
such as the communication radio or primary satellite subsystems, the system has been constructed primarily
with static device addresses and port numbers for simplicity. Hot-plugging of Ethernet capable devices is
easily implemented using MAC addresses and dynamic host configuration protocol (DHCP), and is therefore
considered an option for future modular reuse of hardware devices.

V.A. Communication Architecture

The COTSAT-1 communications architecture incorporates four independent communications paths. The
CPC is coupled with one bidirectional communications link and a beacon in the amateur radio band for public
outreach purposes. The PC-104 flight computer is outfitted with one primary bidirectional communications
link and a secondary unidirectional communications link for high speed data downlink capabilities. The
software architecture has been designed to accommodate any number of additional communications links
through the PC-104 flight computer interfaces. The primary spacecraft command and control, communica-
tion, as well as spacecraft health and status telemetry is handled via the bidirectional communications link
on the CPC. The unidirectional, high speed communications downlink on the PC-104 is for payload data.

The flight software on the PC-104 is responsible for routing data command and control packets to the
appropriate Ethernet port which may be the CPC or primary spacecraft subsystems. The communications
link on the PC-104 is therefore capable of routing command and control information from the PC-104 flight
computer or communications radio to the CPC and vice versa, providing a backup communications link.
The bidirectional link on the PC-104 is also responsible for providing additional detailed spacecraft health
and status telemetry to the ground station.

4 of 8

American Institute of Aeronautics and Astronautics

VI. Software Architecture

In addition to immediate development and cost reduction, a desired goal for the COTSAT-1 software
architecture was to promote and maximize potential software reuse. This was achieved with COTSAT-1 by
generating a set of core software daemons for common spacecraft functions. On the PC-104, the software
architecture consists of modular, independent software daemons for each subsystem or capability. A software
daemon exists for the star tracker, the IMU, the reaction wheels, the main executive, the communications
system, the control system and the payload. Each software daemon is given a pre-determined priority level
for the multitasking operating system. Major subsystem software daemons communicate via UDP/TCP. The
modular software architecture allows for parallel development and testing before integration. In addition,
the architecture allows for subsystem reuse on future missions.

In addition to utilizing separate software daemons for major subsystems, the COTSAT-1 software also
makes extensive use of dynamically loadable shared object libraries. Each module, for example the module
to interface with hardware such as the IMU, is compiled into a dynamic shared object library. The shared
object libraries not only adhere to the modular design, but also provide flexibility in software upgrades and
simulation. In the case of COTSAT-1, the host operating system was the same as the target PC-104. As
a result, the flight software shared object libraries could then be used in Matlab/Simulink for simulation
purposes. The procedure allows for verification of the flight software functionality, for debugging purposes
and also allows for testing system response with simulated environmental conditions.

The operating system selected for COTSAT-1 is Debian GNU/Linux with the Linux kernel compiled
with Ingo Molnar’s low-latency kernel preemption patch and high resolution timers to support real-time
performance. The Debian GNU/Linux distribution was selected due to the vast number of available software
packages and the ease of streamlining the system to a minimal set of installed components. In addition,
by selecting GNU/Linux as the satellite operating system, COTSAT-1 was able to leverage upon a number
of industry or open source community supported COTS hardware. Open source software libraries and
community supported software programs were also leveraged to further reduce development costs. For
example, as already described, the software architecture consists of modular software daemons for major
satellite subsystems. COTSAT-1 utilizes an open source software utility called Monit to monitor and manage
the satellite software daemons. The Monit daemon monitoring tools are used to ensure the software daemons
are in nominal operating conditions. If a subsystem daemon is no longer functioning properly, the monitoring
daemon is configured among many options to automatically restart the subsystem or to notify the PC
executive.

Revision control, configuration management and coordination between software developers on multiple
test platforms is achieved by use of Subversion and the Debian package management system. Each software
daemon and shared object library for the satellite software is distributed as a Debian package. Software
installation via Debian packages ensures proper software version dependency resolution and proper previous
software version removal. The software packages are distributed to the flight hardware and development/test
platforms using a networked server running the Advanced Packaging Tool, APT. APT is a Debian package
management utility which additionally handles dependency resolution. Upon a request to install a particular
software package, APT searches for dependencies and then downloads and installs or updates the software
packages as necessary. For example, the entire software suite for COTSAT-1 is installed from the remote
APT server by simply issuing the command to install the “cotsat” package. The procedure allows efficient
and cost effective development of the flight software as well as an ability to reuse software packages across
various spacecraft missions. By using the power of the Debian package management system, parallel rapid
development/testing and configuration management is achieved.

In order to increase potential code reuse, standard open source GNU tools for software development are
utilized for COTSAT-1. Wilmot7 notes that the adoption of standard open source GNU tools aids in estab-
lishing commonality between build tools and reducing dependency on proprietary tools, thereby increasing
the potential software reuse and hence cost reduction. For example, task scheduling and prioritization on
COTSAT-1 is implemented using Posix Threads (PThreads), a standard threading library. By using a POSIX
compliant threading structure, the software will operate on any POSIX compliant system, preventing the
software from becoming locked to a particular design. Additionally, the use of a standard library maximizes
reusability and the generated code is more readily understood by other software developers, hence reducing
training time and cost.

5 of 8

American Institute of Aeronautics and Astronautics

VII. Attitude Determination and Control

COTSAT-1 has a three-axis Attitude Determination And Control System (ADACS), using four reaction
wheels and three magnetic torque coils. Nominal operations include the use of the reaction wheel system
for three-axis pointing control with the torque coils used for wheel desaturation. The torque coils are also
essential for initial stabilization of the satellite after launch and for detumbling the spacecraft when the
PC-104 system is not fully initialized. The torque coils may also be used by the PC-104 flight computer to
produce additional torques should the reaction wheel system become degraded during nominal operations.
Both the reaction wheels and the torque coils are developed in-house at NASA Ames. Developing the reaction
wheel system at ARC has generated wheels at 10% of the cost for similar wheels, while still achieving the
same performance characteristics and durability.

The control system requires input from the attitude determination sensors and the reaction wheel system
(control system actuators). Consistent with the software design architecture, each subsystem communicates
with resource subsystems via Ethernet packets. The interface between the control system and the actuators
is a data packet with a set of requested body torques. The control system actuator subsystem daemon
transforms the requested body torques into individual low-level control commands which are sent to the
actuator hardware. In the case of COTSAT-1, the requested torques are translated into voltage control
signals for each reaction wheel.

The information exchanged between the control system and the attitude determination sensors is a
quaternion describing the satellite attitude and satellite body rotational rates. The control system need not
necessarily have information as to the actual source of the determined attitude information. Although the
concept was conceived independently by the COTSAT-1 project, the design philosophy is similar to that
of Graven et al.,5 where the nature of the information exchanged stems directly from the physics rather
than from the hardware devices present. The attitude information knowledge is abstracted from the actual
source device. The attitude control system simply assumes that the satellite has the capability of providing
attitude information and rotational body rates at a minimum desired rate. For COTSAT-1 the attitude
information is provided via an attitude estimator subsystem daemon. The COTSAT-1 attitude estimator is
an extended Kalman filter, which utilizes body rate sensor information and regular star tracker quaternion
updates. A USB MicroStrain IMU is used for body rate information. Although the MicroStrain IMU
contains an integrated magnetometer for absolute orientation determination, magnetic fields generated from
satellite components such as the reaction wheels is expected to interfere with magnetometer readings. As a
result, the attitude control system for COTSAT-1 only utilizes the IMU for body rate information.

Since the control system software daemon is separated from the attitude estimator subsystem, a change
in the method to determine spacecraft attitude information will not require a change to the control system
software modules. For instance, the attitude estimator could receive information from a different combination
of attitude sensors such as a sun sensor, horizon sensor, or an IMU, yet the same basic attitude information
in the form of a quaternion and body rotational rates would be supplied to the control system. By designing
the system to accept a standard set of parameters related to the physics rather than directly from hardware
sensor and actuator inputs/outputs, the ability to mix and match various hardware devices to provide the
same capability is maximized. Similarly, the ability to reuse developed technology and subsystem modules
for future missions is enhanced.

VII.A. Star Tracker

Most star trackers utilize extremely customized and proprietary designs down to the circuitry level, from
which much of their extremely high cost is derived. However, it is possible to use existing off-the-shelf
technology to create a star tracker with competing performance to its custom counterparts. By using a
COTS imaging device, removing software processing from the star tracker itself, and developing software in-
house, cost was greatly reduced and the ability to reuse technology for future missions was greatly enhanced.
For example, since the camera and lens are COTS products, the hardware can be easily interchanged with
other hardware to suit various mission requirements. The software would then only require configuration
file modifications for the new hardware, such as to identify the orientation and location of the device within
the satellite. The same star tracker software can be applied to different hardware with very little additional
development. The system is also fully expandable, such that adding units for redundancy only incurs
additional hardware costs.

For COTSAT-1, there are four star trackers on the satellite, each of which is comprised of a Lumenera

6 of 8

American Institute of Aeronautics and Astronautics

monochrome machine-vision camera and a FUJINON lens. The star tracker cameras are all connected to and
powered by the PC/104 stack via USB 2.0 ports. Image processing and attitude determination is performed
on the PC/104 stack. In order to identify stars in images, the software contains a star database derived from
the 118,218-star Hipparcos catalog.1 The database contains a list of every star pair within the camera field
of view and the angular distance between those pairs. It also contains the inertial position information for
each individual star directly from the Hipparcos catalog. The spacecraft attitude information is computed
directly as a quaternion from the star field image information.

For rapid prototyping, the star tracker quaternion attitude estimation algorithm was originally written
entirely in Matlab/Simulink and then integrated with the rest of the system via Real-Time Workshop
auto-code generation. The use of Simulink/Real-Time Workshop auto-code generation has promoted rapid
prototyping capabilities and then where necessary the Simulink models are supplemented with hand written
C/C++ code. The entire star tracker software and estimation algorithms on COTSAT-1 is now entirely
written in native C++ with the GNU tool chain for enhanced performance. For simulation purposes, the
native C++ software is included into the Simulink models by using the shared object libraries compiled
for the star tracker system. Simulink model blocks which had previously represented the star tracker
prototype model are therefore directly replaced with the external library. The use of the GNU tool chain
removes the dependency on proprietary, hardware specific libraries. In addition, the flight software is
more readily utilized on other platforms and operating systems. The switch of the software design from
Real-Time Workshop auto-code generation to native C++ for the star tracker brought about a number of
additional advantages, including: 1. Simplified integration, 2. Improved configuration management capability
via Subversion, 3. Eliminated proprietary software dependencies and licenses, 4. Increased portability to other
hardware, 5. Maximized software modularity and the potential for reuse, and 6. Better performance.

VIII. Test Platform

Figure 4. Third Test Platform

To aid in technology development and testing, the
COTSAT-1 hardware and technology performance has been
verified by a number of prototype test-beds. There have been
three major test platforms during the development cycle.

The first test platform consisted of a single degree of
freedom system with one reaction wheel. For simplicity the
first platform utilized an aircraft grade IMU (not suitable
for space applications) and a single board computer running
Microsoft Windows. A single star tracker was also integrated
into the system. For rapid prototyping purposes, a simplified
event driven state machine for the system was executed via
Matlab/Stateflow on a network connected desktop work-
station. The first prototype demonstrated functionality of
custom-built hardware, electronics, and software for items
such as the reaction wheel, the star tracker, the CPC and
RPC. Resulting performance and knowledge gained by initial
integration aided in directing the future development of both
the hardware and architecture.

The second development test platform incorporated ad-
ditional flight prototype hardware, providing a platform for
in-the-loop testing of flight engineering models. The second
platform incorporated four reaction wheels in the flight configuration, two star trackers, and the flight IMU
for testing of the reaction wheel control system. The system utilized the flight PC-104 computer running
Debian GNU/Linux. The second platform was the first to begin using the actual flight software, even though
only the main control system and related subsystems had been tested and completed to flight specifications.
A basic PC executive to operate the system was written in C/C++ using PThreads and was executed directly
on the PC-104. Initially, the second prototype platform did not utilize the flight communications radios, but
was later outfitted to utilize the flight bidirectional radio on the CPC and the IP addressable bidirectional
radio on the PC-104 .

The third test platform, Figure 4, is a proto-flight unit, consisting primarily of flight versions of hardware

7 of 8

American Institute of Aeronautics and Astronautics

and software. Proto-flight hardware on the third test platform includes for example: reaction wheels, four
star trackers, two redundant IMU’s, lithium-ion batteries, payload camera, PC-104 flight computer with
heat pipe thermal solution, magnetometer (not present in previous test platforms). The final flight revision
of the custom-built CPC and RPC circuitry is also present and the entire satellite is wired with the flight
wiring configuration to test for unexpected noise or grounding issues.

The complete flight software architecture is implemented on the third test platform. Software modules
which have been verified during test procedures of the previous test platform have been established as flight
ready. Knowledge gained during testing of the control system on the previous demonstration unit aided
to complete the integration of the attitude control system sensors and actuators. The flight version of the
star tracker software, and attitude estimation techniques is implemented, as well as a number of modules to
control basic devices such as the IMU and reaction wheel. The third test platform is the first to implement
the flight version of the main PC executive and radio communications routines. The final flight versions of
the software have yet to be completely verified on the proto-flight unit, but are expected to require only
minimal modification to achieve flight status. It is expected that some configuration parameters will need
to be modified, such as control loop gains to reflect the actual final satellite mass properties.

IX. Final Remarks

The Cost Optimized Test of Spacecraft Avionics and Technologies project, COTSAT-1, has examined and
demonstrated a number of cost reduction techniques for rapid spacecraft design. As presented in this paper,
COTSAT-1 has adopted a number of design philosophies and industry technologies not currently widely
accepted within the spacecraft design community. One of the primary enabling technologies is the adoption
of the artificial environment container, which further provides for a number of cost reduction techniques, such
as the use of COTS technologies. Open source software further expands the cost reduction techniques by
promoting a wide array of software reuse and design architectures. Furthermore, adopting widely accepted
standard interfaces such as Ethernet and USB promotes cost reduction by increasing the number of available
off the shelf hardware and software solutions. Selecting widely adopted standard data interfaces additionally
enables accelerated testing, prototyping and parallel development without necessarily having access to the
host platform.

References

1ESA, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200.
2E.P. Lee et al. The *.sat CubeSat bus: When three cubes meet. In 19th Annual AIAA/USU Conference on Small

Satellites, 2005.
3S. Spremo et al. Low-cost rapid response spacecraft, LCRRS. A case study in small satellite cost optimization for

government and commerical use. In Proceedings of the AIAA Space 2008 Conference, San Diego, CA, 2008. SSC08-IV-7.
4S. Spremo et al. Low-cost rapid response spacecraft, LCRRS (CheapSat) - A research project in low-cost spacecraft design

and fabrication while maintaining flight standards in a rapid prototyping environment. In 22nd Annual AIAA/USU Conference
on Small Satellites, Logan, UT, 2008. SSC08-II-4.

5P. Graven, Y. Plam, L.J. Hansen, and S. Harvey. Implementing plug-and-play ADCS to support operationally responisve
space. IEEEAC Paper No. 1586, December 2007. Version 2.

6G.S. Vetrov. S.P. Korolev i ego delo: svet i teni v istorii kosmonavtiki. Nauka, Moscow, 1998. (in Russian).
7J. Wilmot. Implications of responsive space on the flight software architecture. In Proceedings of the AIAA 4th Responsive

Space Conference, Los Angeles, CA, April 2006.

8 of 8

American Institute of Aeronautics and Astronautics

