Abstract

Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-speci c structure. In this rst step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four di erent 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominal dimension of 20×20×80 mm3 were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the e ect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρe, the e ective atomic number Ze , and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coe cients, while proton irradiations were performed to measure the proton range shift of the samples. The direc- tional dependence of these properties was investigated by performing the irradiations for di erent orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Ze ranging from 5.91 to 10.43. The SPR and ρe both ranged from 0.6 to 1.22. The measured photon attenuation coe cients at clinical energies scaled linearly with ρe. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Ze . As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the rst step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical work ow for the rst time: from the material printing to DECT characterization with a veri cation through beam measurements. Besides a proof of concept for beam modi cation, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy

    Similar works