79 research outputs found

    Rodent Aβ Modulates the Solubility and Distribution of Amyloid Deposits in Transgenic Mice

    Get PDF
    The amino acid sequence of amyloid precursor protein (APP) is highly conserved, and age-related Abeta aggregates have been described in a variety of vertebrate animals, with the notable exception of mice and rats. Three amino acid substitutions distinguish mouse and human Abeta that might contribute to their differing properties in vivo. To examine the amyloidogenic potential of mouse Abeta, we studied several lines of transgenic mice overexpressing wild-type mouse amyloid precursor protein (moAPP) either alone or in conjunction with mutant PS1 (PS1dE9). Neither overexpression of moAPP alone nor co-expression with PS1dE9 caused mice to develop Alzheimer-type amyloid pathology by 24 months of age. We further tested whether mouse Abeta could accelerate the deposition of human Abeta by crossing the moAPP transgenic mice to a bigenic line expressing human APPswe with PS1dE9. The triple transgenic animals (moAPP x APPswe/PS1dE9) produced 20% more Abeta but formed amyloid deposits no faster and to no greater extent than APPswe/PS1dE9 siblings. Instead, the additional mouse Abeta increased the detergent solubility of accumulated amyloid and exacerbated amyloid deposition in the vasculature. These findings suggest that, although mouse Abeta does not influence the rate of amyloid formation, the incorporation of Abeta peptides with differing sequences alters the solubility and localization of the resulting aggregates

    BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer's Disease

    Get PDF
    Abstractβ-site APP cleaving enzyme 1 (BACE1) is the β-secretase enzyme required for generating pathogenic β-amyloid (Aβ) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Aβ and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1−/−·Tg2576+) are rescued from Aβ-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1−/−·Tg2576+ bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1−/−·Tg2576+ mice is correlated with a dramatic reduction of cerebral Aβ40 and Aβ42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Aβ levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD

    Environmental Enrichment Mitigates Cognitive Deficits in a Mouse Model of Alzheimer's Disease

    Get PDF
    Epidemiological studies suggest that individuals with greater education or more cognitively demanding occupations have diminished risk of developing dementia. We wanted to test whether this effect could be recapitulated in rodents using environmental enrichment, a paradigm well documented to attenuate behavioral deficits induced by various pathological insults. Here, we demonstrate that learning and memory deficits observed in a transgenic mouse model of Alzheimer's disease can be ameliorated by enrichment. Female transgenic mice overexpressing amyloid precursor protein and/or presenilin-1 and nontransgenic controls were placed into enriched or standard cages at 2 months of age and tested for cognitive behavior after 6 months of differential housing. Enrichment significantly improved performance of all genotypes in the radial water maze and in the classic and repeated-reversal versions of the Morris water maze. However, enrichment did not benefit all genotypes equally. Mice overproducing amyloid-β (Aβ), particularly those with amyloid deposits, showed weaker memory for the platform location in the classic Morris water maze and learned new platform positions in the repeated-reversals task less quickly than their nontransgenic cagemates. Nonetheless, enrichment normalized the performance of Aβ-overproducing mice to the level of standard-housed nontransgenic mice. Moreover, this functional preservation occurred despite increased neuritic plaque burden in the hippocampus of double-transgenic animals and elevated steady-state Aβ levels, because both endogenous and transgene-derived Aβ are increased in enriched animals. These results demonstrate that the generation of Aβ in vivo and its impact on the function of the nervous system can be strongly modulated by environmental factors

    LRRTM3 Interacts with APP and BACE1 and Has Variants Associating with Late-Onset Alzheimer's Disease (LOAD)

    Get PDF
    Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer’s disease (LOAD) risk and plasma amyloid β (Aβ) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aβ, although the mechanism of this is unclear. In SH-SY5Y cells overexpressing APP and transiently transfected with LRRTM3 alone or with BACE1, we showed that LRRTM3 co-localizes with both APP and BACE1 in early endosomes, where BACE1 processing of APP occurs. Additionally, LRRTM3 co-localizes with APP in primary neuronal cultures from Tg2576 mice transduced with LRRTM3-expressing adeno-associated virus. Moreover, LRRTM3 co-immunoprecipitates with both endogenous APP and overexpressed BACE1, in HEK293T cells transfected with LRRTM3. SH-SY5Y cells with knock-down of LRRTM3 had lower BACE1 and higher CTNNA3 mRNA levels, but no change in APP. Brain mRNA levels of LRRTM3 showed significant correlations with BACE1, CTNNA3 and APP in ∼400 humans, but not in LRRTM3 knock-out mice. Finally, we assessed 69 single nucleotide polymorphisms (SNPs) within and flanking LRRTM3 in 1,567 LOADs and 2,082 controls and identified 8 SNPs within a linkage disequilibrium block encompassing 5′UTR-Intron 1 of LRRTM3 that formed multilocus genotypes (MLG) with suggestive global association with LOAD risk (p = 0.06), and significant individual MLGs. These 8 SNPs were genotyped in an independent series (1,258 LOADs and 718 controls) and had significant global and individual MLG associations in the combined dataset (p = 0.02–0.05). Collectively, these results suggest that protein interactions between LRRTM3, APP and BACE1, as well as complex associations between mRNA levels of LRRTM3, CTNNA3, APP and BACE1 in humans might influence APP metabolism and ultimately risk of AD.© 2013 Lincoln et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Persistent Amyloidosis following Suppression of Aβ Production in a Transgenic Model of Alzheimer Disease

    Get PDF
    BACKGROUND: The proteases (secretases) that cleave amyloid-β (Aβ) peptide from the amyloid precursor protein (APP) have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Aβ production in the brain, even after the onset of clinical symptoms and the development of associated pathology, will facilitate the repair of damaged tissue and removal of amyloid lesions. However, no long-term studies using animal models of amyloid pathology have yet been performed to test this hypothesis. METHODS AND FINDINGS: We have generated a transgenic mouse model that genetically mimics the arrest of Aβ production expected from treatment with secretase inhibitors. These mice overexpress mutant APP from a vector that can be regulated by doxycycline. Under normal conditions, high-level expression of APP quickly induces fulminant amyloid pathology. We show that doxycycline administration inhibits transgenic APP expression by greater than 95% and reduces Aβ production to levels found in nontransgenic mice. Suppression of transgenic Aβ synthesis in this model abruptly halts the progression of amyloid pathology. However, formation and disaggregation of amyloid deposits appear to be in disequilibrium as the plaques require far longer to disperse than to assemble. Mice in which APP synthesis was suppressed for as long as 6 mo after the formation of Aβ deposits retain a considerable amyloid load, with little sign of active clearance. CONCLUSION: This study demonstrates that amyloid lesions in transgenic mice are highly stable structures in vivo that are slow to disaggregate. Our findings suggest that arresting Aβ production in patients with Alzheimer disease should halt the progression of pathology, but that early treatment may be imperative, as it appears that amyloid deposits, once formed, will require additional intervention to clear

    Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, abeta, and alzheimer's disease.

    Get PDF
    Background: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD). Methodology/Principal findings: We examined conserved regions of IDE and its 10 kb flanks in 269 AD cases and 252 controls thereby identifying 17 putative functional polymorphisms. These variants formed eleven haplotypes that were tagged with ten variants. Four of these showed significant association with IDE transcript levels in samples from 194 LOAD cerebella. The strongest, rs6583817, which has not previously been reported, showed unequivocal association (p = 1.5x10(-8), fold-increase = 2.12,); the eleven haplotypes were also significantly associated with transcript levels (global p = 0.003). Using an in vitro dual luciferase reporter assay, we found that rs6583817 increases reporter gene expression in Be(2)-C (p = 0.006) and HepG2 (p = 0.02) cell lines. Furthermore, using data from a recent genome-wide association study of two Croatian isolated populations (n = 1,879), we identified a proxy for rs6583817 that associated significantly with decreased plasma Abeta40 levels (ss = -0.124, p = 0.011) and total measured plasma Abeta levels (b = -0.130, p = 0.009). Finally, rs6583817 was associated with decreased risk of LOAD in 3,891 AD cases and 3,605 controls. (OR = 0.87, p = 0.03), and the eleven IDE haplotypes (global p = 0.02) also showed significant association. Conclusions: Thus, a previously unreported variant unequivocally associated with increased IDE expression was also associated with reduced plasma Ass40 and decreased LOAD susceptibility. Genetic association between LOAD and IDE has been difficult to replicate. Our findings suggest that targeted testing of expression SNPs (eSNPs) strongly associated with altered transcript levels in autopsy brain samples may be a powerful way to identify genetic associations with LOAD that would otherwise be difficult to detect

    Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility

    Get PDF
    Background Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology. Results Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01). Conclusions Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology

    Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias

    Get PDF
    Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias
    corecore