3,294 research outputs found

    From MinX to MinC: Semantics-Driven Decompilation of Recursive Datatypes

    Get PDF
    Reconstructing the meaning of a program from its binary executable is known as reverse engineering; it has a wide range of applications in software security, exposing piracy, legacy systems, etc. Since reversing is ultimately a search for meaning, there is much interest in inferring a type (a meaning) for the elements of a binary in a consistent way. Unfortunately existing approaches do not guarantee any semantic relevance for their reconstructed types. This paper presents a new and semantically-founded approach that provides strong guarantees for the reconstructed types. Key to our approach is the derivation of a witness program in a high-level language alongside the reconstructed types. This witness has the same semantics as the binary, is type correct by construction, and it induces a (justifiable) type assignment on the binary. Moreover, the approach effectively yields a type-directed decompiler. We formalise and implement the approach for reversing Minx, an abstraction of x86, to MinC, a type-safe dialect of C with recursive datatypes. Our evaluation compiles a range of textbook C algorithms to MinX and then recovers the original structures

    Determining mean first-passage time on a class of treelike regular fractals

    Full text link
    Relatively general techniques for computing mean first-passage time (MFPT) of random walks on networks with a specific property are very useful, since a universal method for calculating MFPT on general graphs is not available because of their complexity and diversity. In this paper, we present techniques for explicitly determining the partial mean first-passage time (PMFPT), i.e., the average of MFPTs to a given target averaged over all possible starting positions, and the entire mean first-passage time (EMFPT), which is the average of MFPTs over all pairs of nodes on regular treelike fractals. We describe the processes with a family of regular fractals with treelike structure. The proposed fractals include the TT fractal and the Peano basin fractal as their special cases. We provide a formula for MFPT between two directly connected nodes in general trees on the basis of which we derive an exact expression for PMFPT to the central node in the fractals. Moreover, we give a technique for calculating EMFPT, which is based on the relationship between characteristic polynomials of the fractals at different generations and avoids the computation of eigenvalues of the characteristic polynomials. Making use of the proposed methods, we obtain analytically the closed-form solutions to PMFPT and EMFPT on the fractals and show how they scale with the number of nodes. In addition, to exhibit the generality of our methods, we also apply them to the Vicsek fractals and the iterative scale-free fractal tree and recover the results previously obtained.Comment: Definitive version published in Physical Review

    Bulk Mediated Surface Diffusion: Non Markovian Desorption with Finite First Moment

    Full text link
    Here we address a fundamental issue in surface physics: the dynamics of adsorbed molecules. We study this problem when the particle's desorption is characterized by a non Markovian process, while the particle's adsorption and its motion in the bulk are governed by a Markovian dynamics. We study the diffusion of particles in a semi-infinite cubic lattice, and focus on the effective diffusion process at the interface z=1z = 1. We calculate analytically the conditional probability to find the particle on the z=1z=1 plane as well as the surface dispersion as functions of time. The comparison of these results with Monte Carlo simulations show an excellent agreement.Comment: 16 pages, 7 figs. European Physical Journal B (in press

    Sliding blocks with random friction and absorbing random walks

    Full text link
    With the purpose of explaining recent experimental findings, we study the distribution A(λ)A(\lambda) of distances λ\lambda traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the friction coefficient μ\mu is a random function of position is considered. The problem of finding A(λ)A(\lambda) is equivalent to a First-Passage-Time problem for a one-dimensional random walk with nonzero drift, whose exact solution is well-known. From the exact solution of this problem we conclude that: a) for inclination angles θ\theta less than \theta_c=\tan(\av{\mu}) the average traversed distance \av{\lambda} is finite, and diverges when θθc\theta \to \theta_c^{-} as \av{\lambda} \sim (\theta_c-\theta)^{-1}; b) at the critical angle a power-law distribution of slidings is obtained: A(λ)λ3/2A(\lambda) \sim \lambda^{-3/2}. Our analytical results are confirmed by numerical simulation, and are in partial agreement with the reported experimental results. We discuss the possible reasons for the remaining discrepancies.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    An assessment of pulse transit time for detecting heavy blood loss during surgical operation

    Get PDF
    Copyright @ Wang et al.; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan

    Nanoscale atomic waveguides with suspended carbon nanotubes

    Full text link
    We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows to overcome the problem of fragmentation of the atom cloud. Adding a second nanowire allows to create a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.Comment: Replaced with the published version, 7 pages, 3 figure

    On the stability of 2 \sqrt{2} x 2 \sqrt{2} oxygen ordered superstructures in YBa2Cu3O6+x

    Full text link
    We have compared the ground-state energy of several observed or proposed " 2 \sqrt{2} x 2 \sqrt{2} oxygen (O) ordered superstructures " (from now on HS), with those of "chain superstructures" (CS) (in which the O atoms of the basal plane are ordered in chains), for different compositions x in YBa2Cu3O6+x. The model Hamiltonian contains i) the Madelung energy, ii) a term linear in the difference between Cu and O hole occupancies which controls charge transfer, and iii) covalency effects based on known results for tJt-J models in one and two dimensions. The optimum distribution of charge is determined minimizing the total energy, and depends on two parameters which are determined from known results for x=1 and x=0.5. We obtain that on the O lean side, only CS are stable, while for x=7/8, a HS with regularly spaced O vacancies added to the x=1 structure is more stable than the corresponding CS for the same x. We find that the detailed positions of the atoms in the structure, and long-range Coulomb interactions, are crucial for the electronic structure, the mechanism of charge transfer, the stability of the different phases, and the possibility of phase separation.Comment: 24 text pages, Latex, one fig. included as ps file, to be publisheb in Phys. Rev.

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    The Role of the Environment in Chaotic Quantum Dynamics

    Get PDF
    We study how the interaction with an external incoherent environment induces a crossover from quantum to classical behavior for a particle whose classical motion is chaotic. Posing the problem in the semiclassical regime, we find that noise produced by the bath coupling rather than dissipation is primarily responsible for the dephasing that results in the ``classicalization'' of the particle. We find that the bath directly alters the phase space structures that signal the onset of classical chaos. This dephasing is shown to have a semiclassical interpretation: the noise renders the interfering paths indistinguishable and therefore incoherent. The noise is also shown to contribute to the quantum inhibition of mixing by creating new paths that interfere coherently.Comment: 10 pages RevTex. Three figures in Postscript as a uuencoded compressed tar file have been submitted as wel

    Dynamical Viscosity of Nucleating Bubbles

    Get PDF
    We study the viscosity corrections to the growth rate of nucleating bubbles in a first order phase transition in scalar field theory. We obtain the non-equilibrium equation of motion of the coordinate that describes small departures from the critical bubble and extract the growth rate consistently in weak coupling and in the thin wall limit. Viscosity effects arise from the interaction of this coordinate with the stable quantum and thermal fluctuations around a critical bubble. In the case of 1+1 dimensions we provide an estimate for the growth rate that depends on the details of the free energy functional. In 3+1 dimensions we recognize robust features that are a direct consequence of the thin wall approximation and give the leading viscosity corrections.These are long-wavelength hydrodynamic fluctuations that describe surface waves, quasi-Goldstone modes which are related to ripples on interfaces in phase ordered Ising-like systems. We discuss the applicability of our results to describe the growth rate of hadron bubbles in a quark-hadron first order transition.Comment: 40 pages, 4 figures, revtex, minor changes, to be published in Phys. Rev.
    corecore