
From MINX to MINC: Semantics-Driven
Decompilation of Recursive Datatypes

Ed Robbins
University of Kent, UK
er209@kent.ac.uk

Andy King
University of Kent, UK
a.m.king@kent.ac.uk

Tom Schrijvers
KU Leuven, Belgium

tom.schrijvers@cs.kuleuven.be

Abstract
Reconstructing the meaning of a program from its binary exe-
cutable is known as reverse engineering; it has a wide range of ap-
plications in software security, exposing piracy, legacy systems, etc.
Since reversing is ultimately a search for meaning, there is much
interest in inferring a type (a meaning) for the elements of a bi-
nary in a consistent way. Unfortunately existing approaches do not
guarantee any semantic relevance for their reconstructed types.

This paper presents a new and semantically-founded approach
that provides strong guarantees for the reconstructed types. Key to
our approach is the derivation of a witness program in a high-level
language alongside the reconstructed types. This witness has the
same semantics as the binary, is type correct by construction, and
it induces a (justifiable) type assignment on the binary. Moreover,
the approach effectively yields a type-directed decompiler.

We formalise and implement the approach for reversing MINX,
an abstraction of x86, to MINC, a type-safe dialect of C with
recursive datatypes. Our evaluation compiles a range of textbook
C algorithms to MINX and then recovers the original structures.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords reverse engineering, decompilation, recursive datatypes

1. Introduction
Reverse engineering is the activity of reconstructing the behaviour
of a program from its binary executable. Quite apart from illicit
purposes such as removing copyright protection, reversing has le-
gitimate applications which include, but are not limited to: under-
standing the operation of, and threat posed by, viruses and malware;
exposing flaws and vulnerabilities in commercial software, espe-
cially prior to deployment in government or industry; checking for
license infringement; and interfacing with legacy software.

Reversing amounts to searching for a high-level meaning that
is consistent across a binary. Typing, likewise, checks the elements
of a program combine in a consistent, meaningful way, yielding a
valuable program abstraction for the reverse engineer [15]. For ex-
ample, datatypes can guide test-generation in fuzzing [27], help lo-
cate information in a core dump in memory-based forensics [4], and

support program reconstruction [6, 21]. Unfortunately, type recov-
ery has been more make-shift and make-do than a discipline shaped
by formal principles. IDAPro, the leading commercial disassem-
bler, applies heuristics to assign simple types to locals [9]. RE-
WARDS [18] recovers types from a single execution trace, which
sheds no light on other traces. TIE [15] badges itself as being prin-
cipled, but does not relate its type judgements to the semantics of
the binary (which remain unspecified). Yet a firm semantic footing
for these type systems is essential: a type recovery system which
derives an incorrect type can easily mislead a reverse engineer un-
dertaking a security audit, or misdirect a fuzzer into the wrong
search space. Furthermore, these existing type systems [9, 15, 18]
are unable to recover recursive datatypes.

The consensus is that types assigned to the binary should corre-
spond to the original types of the source. But, needless to say, this is
unavailable. This begs the question: what does it mean for the types
to be correct, if there is no source to check correctness against?

We answer this question from a semantic perspective by con-
structing a witness program in a type-safe high-level language. The
witness is not an arbitrary program, but carefully constructed to se-
mantically coincide with the binary. Then, by proving that the wit-
ness is type-correct, we unequivocally establish that the binary in-
habits the recovered types. Structured operational semantics (SOS)
define our exemplar low-level and high-level languages, inspired
by x86 and C respectively. The centrepiece of our formalisation
is a decompilation relation that defines how the witness faithfully
mimics the executable, and under what conditions. Together these
components add up to a semantically-justified type-based decom-
piler. In summary, we make the following contributions:

1. We present a novel semantics-driven approach to type recovery
that validates the types inferred for a low-level (MINX) pro-
gram with a high-level witness (MINC) program. Unique to our
work is a rigorous connection from our MINX binary to our
MINC witness, founded on three key semantic components:

(a) an SOS for MINX, designed as an abstraction of x86 to
elucidate crucial control-flow details, such as the argument
passing convention, needed to show that the MINX and
MINC memories remain truly in sync;

(b) an SOS and static type system for MINC, a type-safe dialect
of C designed to illustrate decompilation of pointer arith-
metic and the recovery of recursive structures;

(c) a decompilation relation, that conservatively specifies when
a MINX program corresponds to a MINC program.

2. In two steps we formally prove that the MINX program inhabits
the recovered types:

(a) First we show that the witness program is type-correct for
the derived types.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30710540?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Decompilation
Relation

Recovered
Types

MINX
program

Semantic Equivalence Well Typedness
MINC Witness

MINX
Program

Recovered
Types

MINC
Witness

Figure 1: System overview

(b) Then we establish the operational equivalence of the MINC
witness program and the original MINX program in the
form of memory consistency.

3. We distil a type-based decompiler from our decompiler relation
and demonstrate the potential of our approach.

(a) We show how non-deterministic choices in the relation can
be replaced with constraint propagators to give a solver that
incrementally infers the witness and the types; the resulting
solver is thus solidly based on the decompilation relation.

(b) We apply the solver to MINX binaries generated from over
21 textbook [31] C programs that manipulate splay trees,
treaps, pairing heaps, etc. All (recursive) datatypes are suc-
cessfully recovered.

2. System and Paper Overview
Figure 1 illustrates how the components of our type recovery sys-
tem fit together. Solid arrows indicate flow whereas dotted lines
indicate bi-directional semantic connections.

The decompilation relation sits at the heart of the diagram. It
relates an input MINX program to two outputs: the recovered types,
and the MINC witness program. The latter is subservient to the
former, since its role (in type recovery) is to justify the recovered
types. The decompilation relation is exactly that, a mathematical
relation, that specifies what it means for a MINX program to be
in correspondence with a MINC program. Nevertheless, a solver
can be constructed, in conformance with the relation, which, given
the input MINX program, computes the two outputs. Hence the
annotated direction of flow.

The semantic connection on the right indicates that the MINC
witness program inhabits the recovered types; the connection on the
left expresses that the MINX program is semantically equivalent to
the witness, in the sense that their memories remain in sync. The
whole construction semantically relates the MINX program to the
recovered types; a connection that follows by transitive closure.

The structure of the paper reflects the diagram; components
are covered as we sweep the diagram left-to-right. Starting on the
left, SOS for MINX programs are detailed in Section 3; followed
by SOS for MINC programs in Section 4. With these semantic
foundations in place, the decompilation (specification) relation is
introduced in Section 5. Section 6 concerns the automation of the
relation and Section 7 assesses the quality of the recovered types,
on the right. We reflect on the state of related work in Section 8,
before discussing the limitations of the method, along with possible
remedies, in Section 9. Finally, Section 10 concludes.

3. The MINX Language
We introduce a lean instruction set, called MINX, to illustrate
our semantic construction. MINX, by design, abstracts away from

control-flow details that distract from the main goal of recovering
recursive datatypes and that would otherwise make the presentation
unmanageable.

Hence, the instruction set supports an unbounded number of
registers. This means that register spilling does not need to be con-
sidered and SSA conversion [29] can be avoided. Also MINX fixes
a single abstract calling convention, which avoids the need for argu-
ment detection techniques and control-flow recovery [1, 7]. These
restrictions can be relaxed in actual binaries by preprocessing steps.

3.1 Memory
An important challenge that we do not sidestep is that of differently-
sized values. At the binary level, the field of a structure is accessed
by a byte offset, which depends on the sizes of the data objects that
precede it. This layout problem is intrinsic to type recovery and
thus we assume memory is organised into bytes, and permit data
objects to straddle contiguous bytes. We thus let Bit = {0, 1} and
define Byte = Bit8∪{⊥} where⊥ denotes a single byte of unini-
tialised (random) memory. A word is then a vector of bytes, that is,
Word = Byte4. The operator : concatenates vectors of bytes (and
single bytes).

Register Bank The set of registers, each of which is of word size,
is denoted Regs = {r0, r1, . . .}. A function R : Regs → Word
maps registers to the words they contain. To manipulate 1 byte and
2 byte objects within a register, we introduce an accessor function
Ri:j : Regs → Byte∗ which slices from byte i (counting from
zero) up to but not including byte j of a given register r. This is
defined by Ri:j(r) = ~b′ where R(r) = ~b : ~b′ : ~b′′ and

~b ∈ Bytei ~b′ ∈ Bytej−i ~b′′ ∈ Byte4−j

For the register map, R, we define a notion of partial update in
which only the least significant w = |~b| bytes of register r are
updated with the bytes~b as follows:

R ◦w {r 7→ ~b} = R ◦ {r 7→ ~b : Rw:4(r)}

Heap Memory The heap is modelled as a (partial) function H :
Word ⇀ Byte and therefore is byte addressable. To read stored
objects that straddle w consecutive bytes we define a function
Hw : Word → Byte∗ that reads and amalgamates w bytes of
the heap into a single vector as follows:

Hw(a) =

{
{⊥}w if ⊥ ∈ a
H(a+4 w −4 1) : · · · : H(a) otherwise

where the operations +4 and−4 denote addition and subtraction in
4 byte bit-vector arithmetic, and 1 denotes a 4 byte bit-vector.

3.2 Syntax
The syntax of MINX programs consists of four syntactic categories.
The first, w ::= 2 | 4, denotes the width, in bytes, of the primitive
data objects that are supported by the instruction set. The second,
ι, defines the instructions themselves:

ι ::= movw r, c | movw ri, rj
| movw ri, [rj] | movw [ri], rj
| movw ri, [rj + c] | movw [ri + c], rj
| eqw ri, rj , rk | op⊕w ri, rj ∗ c
| op⊗w ri, rj | op⊗w ri, c
| alloc ri, rj | alloc ri, rj ∗ c
| call ru, a, ~rv

where c denotes a numeric constant and a ∈ Word is the location
of the function that is to be invoked. (A Harvard architecture is
assumed throughout). Square brackets indicate indirection. The
instructions op⊕w and op⊗w are themselves parameterised by the

~R ` 〈H,R, ι〉 ι−→ 〈H ′, R′〉 ex-mov-rc
R′ = R ◦w {ri 7→ c}

~R ` 〈H,R,movw ri, c〉
ι−→ 〈H,R′〉

ex-mov-rr
R′ = R ◦w {ri 7→ R0:w(rj)}

~R ` 〈H,R,movw ri, rj〉
ι−→ 〈H,R′〉

ex-mov-ri
R′ = R ◦w {ri 7→ Hw(R(rj))}

~R ` 〈H,R,movw ri, [rj]〉
ι−→ 〈H,R′〉

ex-mov-ir

⊥ /∈ H4(R(ri))
H ′ = H ◦ {H4(R(ri)) +4 n 7→ Rn:n+1(rj)}w−1

n=0

~R ` 〈H,R,movw [ri], rj〉
ι−→ 〈H ′, R〉

ex-mov-r+
R′ = R ◦w {ri 7→ Hw(R(rj) +4 c)}

~R ` 〈H,R,movw ri, [rj + c]〉 ι−→ 〈H,R′〉
ex-mov-+r

⊥ /∈ H4(R(ri))
H ′ = H ◦ {H4(R(ri)) +4 c+4 n 7→ Rn:n+1(rj)}w−1

n=0

~R ` 〈H,R,movw [ri + c], rj〉
ι−→ 〈H ′, R〉

ex-eq-true
R0:w(rj) = R0:w(rk) R′ = R ◦w {ri 7→ 1}

~R ` 〈H,R, eqw ri, rj , rk〉
ι−→ 〈H,R′〉

ex-eq-false
R0:w(rj) 6= R0:w(rk) R′ = R ◦w {ri 7→ 0}

~R ` 〈H,R, eqw ri, rj , rk〉
ι−→ 〈H,R′〉

ex-⊕-r*
R′ = R ◦w {ri 7→ R0:w(ri)⊕w (R0:w(rj) ∗w c)}

~R ` 〈H,R, op⊕w ri, rj ∗ c〉
ι−→ 〈H,R′〉

ex-⊗-rc
R′ = R ◦w {ri 7→ R0:w(ri)⊗w c}
~R ` 〈H,R, op⊗w ri, c〉

ι−→ 〈H,R′〉
ex-⊗-rr

R′ = R ◦w {ri 7→ R0:w(ri)⊗w R0:w(rj)}
~R ` 〈H,R, op⊗w ri, rj〉

ι−→ 〈H,R′〉

ex-alloc

⊥ /∈ R(rj)
{l, l +4 1, . . . , l +4 R(rj)−4 1} ∩ dom(H) = ∅

H ′ = H ◦ {l 7→ {⊥}4, l +4 1 7→ {⊥}4, . . . , l +4 R(rj)−4 1 7→ {⊥}4}
R′ = R ◦ {ri 7→ l}

~R ` 〈H,R, alloc ri, rj〉
ι−→ 〈H ′, R′〉

ex-alloc-bot

⊥ ∈ R(rj)
R′ = R ◦ {ri 7→ {⊥}4}

~R ` 〈H,R, alloc ri, rj〉
ι−→ 〈H,R′〉

ex-alloc-*

⊥ /∈ R(rj)
{l, l +4 1, . . . , l +4 R(rj) ∗4 c−4 1} ∩ dom(H) = ∅

H ′ = H ◦ {l 7→ {⊥}4, . . . , l +4 R(rj) ∗4 c−4 1 7→ {⊥}4}
R′ = R ◦ {ri 7→ l}

~R ` 〈H,R, alloc ri, rj ∗ c〉
ι−→ 〈H ′, R′〉

ex-alloc-*-bot

⊥ ∈ R(rj)
R′ = R ◦ {ri 7→ {⊥}4}

~R ` 〈H,R, alloc ri, rj ∗ c〉
ι−→ 〈H,R′〉

ex-call

φx(a) = 〈−−→rarg, rret,−→rloc, λ′x, a0〉
R′ = {−−→rarg 7→ −→rj , rret 7→ {⊥}4,−→rloc 7→ {⊥}4}
λ′x; ~R,R ` 〈H,R′, λ′x(a0)〉 b−→∗〈H ′, R′′, ret〉

~R ` 〈H,R, call ri, a,−→rj 〉
ι−→ 〈H ′, R ◦ {ri 7→ R′′(rret)}〉

λx; ~R ` 〈H,R, b〉 b−→ 〈H ′, R′, b′〉 ex-seq
~R ` 〈H,R, ι〉 ι−→ 〈H ′, R′〉

λx; ~R ` 〈H,R, ι; b〉 b−→ 〈H ′, R′, b〉
ex-goto

λx; ~R ` 〈H,R, goto a〉 b−→ 〈H,R, λx(a)〉

ex-if-true
⊥ /∈ R0:w(ri) R0:w(ri) 6= 0

λx; ~R ` 〈H,R, (ifw ri goto a); b〉 b−→ 〈H,R, λx(a)〉
ex-if-false

⊥ /∈ R0:w(ri) R0:w(ri) = 0

λx; ~R ` 〈H,R, (ifw ri goto a); b〉 b−→ 〈H,R, b〉

Figure 2: Structured Operational Semantics of MINX programs

categories ⊕ ∈ {+,−} and ⊗ ∈ {+,−, ∗, /,&, |, . . .}, and the
width w of their operands. The third category, b, defines blocks:

b ::= ι; b | (ifw ri goto a); b | goto a | ret
Observe that blocks are terminated by control instructions, but
conditional jumps only arise within a block. The fourth category,
dx, defines how functions are declared:

dx ::= 〈−−→rarg, rret,−→rloc, λ′x, a0〉

where λ′x : Word ⇀ b is a partial mapping from addresses to
blocks. Moreover, if

labelsx(b) =

{a} if s = labelsx(goto a)
{a} ∪ labelsx(b′) else if b = (ifw ri goto a); b′

labelsx(b′) else if b = ι; b′

∅ otherwise

Σ ` θ1 <: θ2 sub-refl
Σ ` θ <: θ

sub-trans
Σ ` θ1 <: θ2 Σ ` θ2 <: θ3

Σ ` θ1 <: θ3
sub-ptr

Σ ` θ1 <: θ2

Σ ` θ1∗ <: θ2∗

sub-arr
Σ ` θ1 <: θ2

Σ ` θ1[]∗ <: θ2[]∗
sub-elm

Σ ` θ[]∗ <: θ∗
sub-fld

Σ(N) = 〈θ0, . . . , θn−1〉
Σ ` N∗ <: θ0∗

Figure 3: Subtyping relations of MINC programs

we require
⋃
{labelsx(b) | a 7→ b ∈ λ′x} ⊆ dom(λ′x) so that

jump targets are contained within λ′x. Finally, −−→rarg and −→rloc denote
vectors of (distinct) registers and a0 ∈ dom(λ′x).

3.3 Structured Operational Semantics
Figure 2 presents our (mostly small-step) SOS for MINX as two
judgements: ~R ` 〈H,R, ι〉 ι−→ 〈H ′, R′〉 and λx; ~R ` 〈H,R, b〉 b−→
〈H ′, R′, b′〉. The former details the behaviour of single instructions
and the latter of blocks. Both are parameterised by a vector ~R of
register assignments (needed solely in the proofs) to state that data
accessible from these (shadowed) registers is not mutated by a call.
For reasons of space, we comment only on noteworthy details.

For brevity, in ex-mov-rc, we write c for the vector of w bytes
that represents it. Notice in ex-mov-rr how the least significant w
bytes of the register ri are mutated while the remaining 4 − w
bytes are left intact. In the ex-mov-ri rule, the ri register is set to
4 uninitialised values if rj contains one uninitialised value. The
rule ex-mov-ir requires the 4 bytes of ri to be initialised (otherwise
computation gets stuck). Note how the w low bytes of register rj
are copied to w consecutive bytes of the heap. Rule ex-⊕-r* is
included to support pointer arithmetic, where the data objects are c
bytes in size. Rules ex-⊗-rc and ex-⊗-rr get stuck on, for instance,
division by zero.

Observe how ex-alloc initialises allocated memory (to indicate
garbage). If the register rj itself contains an uninitialised byte, then
rule ex-alloc-bot sets ri to be uninitialised. The rule ex-alloc-* is
employed to allocate an array of objects, each of size c.

The ex-call is worthy of note, as it is particularly unusual. Four
bytes of each of the registers −→rj are copied to −−→rarg , which is
abbreviated to −−→rarg 7→ −→rj in the judgement. Local registers −→rloc
and the return register, rret, are set to uninitialised values. The
entry block λ′x(a0) is executed, and any subsequent block that leads
on from it, until ret is encountered, whereupon the register values
are restored and register rj updated with the return value.

Observe how ex-if-true and ex-if-false get stuck if the decision
register contains an uninitialised byte.

4. The MINC Language
MINC (Minimal C) is the language of our witness programs and the
target of our decompilation. We do not use C directly because, even
though C is expressive enough to capture the semantics of machine
instructions, it lacks one crucial ingredient: type safety. In contrast,
we designed MINC to be type-safe, and still be close enough to C
to recover MINX programs.

4.1 Syntax
MINC features three different kinds of types:

t ::= short | long θ ::= t | τ∗ τ ::= θ | θ[] | N
A primitive type t is either a short or a long integer. A compact type
θ is a type that can be assigned to a program variable, it is either
a primitive type t or a pointer type τ∗. Finally, a general type τ is
either a compact type θ, an array type θ[] or a struct type identified
by its name N .

MINC programs themselves are defined in terms of the cate-
gories of statements s, expressions e and lvalues ` as follows:

s ::= (` := e); s
| (if e goto l); s
| goto l
| return

` ::= x
| ∗x
| x→ c
| x[e]

e ::= ` | c | &x | f(~e)
| new θ | new θ[e]
| new struct N
| (e1 ⊕ e2) | (e1 ⊗ e2)

where ⊕ and ⊗ are defined as in MINX. Function declarations,

dc ::= f(
−−→
x : θ)〈

−−−→
y : θ′, l, λc, j〉

include a vector of arguments and their types
−−→
x : θ, a vector of

locals and their types
−−−→
y : θ′, an entry label l ∈ Label , a partial

mapping of labels to statements, λc : Label ⇀ b, and an index
j into y indicating which local variable holds the return value.
Labels must be contained within dom(λc), analogous to what was
previously defined.

4.2 Type System
Figure 4 defines the MINC type system as well-typing judgements
Σ ` d, Γc; Σ ` s, Γc; Σ ` ` : θ and Γc; Σ ` e : θ for the four
syntactic sorts. As well as the variable type environment Γc, the
judgements make use of Σ, which maps struct names N to vectors
~θ of their field types. We also assume a global environment φc that
contains all function definitions.

Because it admits type safety, the type system is stricter than that
of C. For example, C allows any integer to be added to the address
of a primitive type, which is not permitted in MINC. Unlike C,
arrays are first-class types, which means that it is possible to pass
them as arguments to functions and return them, without demoting
them to simple pointers. The upshot of this is that in MINC it is
possible to distinguish between θ∗ and θ[]∗.

To regain some of C’s flexibility, without compromising on type
safety, we have equipped MINC’s type system with subtyping (see
Figure 3). For instance, an array θ[]∗ is a subtype of θ∗, which
allows the assignment of an array to a compatible pointer.

As evident in the rules t-s and t-l, MINC literals are tagged:
short values are tagged cs and long values cl. Although in general
pointer literals do not exist in MINC, an exception is the special
value 0∗, equivalent to NULL in C.

4.3 Semantics
Figure 5 presents the semantics of MINC, which are defined (and
related to MINX in Fig 7) in terms of some auxiliary functions:
sizeof (θ) gives the size of an object of type θ in bytes:

sizeof (short) = 2 sizeof (long) = 4 sizeof (τ∗) = 4

The functions untagt(nt) = n and tagt(n) = nt remove and add
a tag t. Furthermore, given a set of non-empty ranges π⊆{[l, u] |
0 ≤ l ≤ u ≤ 232 − 1} that represents a set of (disjoint) memory
regions, addition of a short and an address is defined as:

u+π v =

⊥ if u = ⊥ ∨ v = ⊥
tag∗(s) else if ∃r ∈ π.{m, s} ⊆ r
err otherwise

Σ ` d t-def
Γc = {

−−→
x : θ,

−−−→
y : θ′} l ∈ dom(λc) yj ∈ ~y ∀l′ ∈ dom(λc) : Γc; Σ ` λc(l′)

Σ ` f(
−−→
x : θ)〈

−−−→
y : θ′, l, λc, j〉

Γc; Σ ` s t-assn

Γc; Σ ` ` : θ1 Γc; Σ ` e : θ2

Σ ` θ2 <: θ1 Γc; Σ ` s
Γc; Σ ` (` := e); s

t-if

Γc; Σ ` e : θ
Γc; Σ ` s

Γc; Σ ` (if e goto l); s
t-goto

Γc; Σ ` goto l
t-ret

Γc; Σ ` return

Γc; Σ ` ` : θ t-var
x : θ ∈ Γc

Γc; Σ ` x : θ
t-ptr

Γc; Σ ` x : τ∗
Γc; Σ ` ∗x : τ

t-fld

Γc; Σ ` x : N∗
Σ(N) = 〈θ0, . . . , θn−1〉

Γc; Σ ` x→ i : θi
t-ar

Γc; Σ ` x : θ[]∗
Γc; Σ ` e : t

Γc; Σ ` x[e] : θ

Γc; Σ ` e : θ t-amp
Γc; Σ ` y : τ

Γc; Σ ` &y : τ∗ t-l
Γc; Σ ` cl : long

t-s
Γc; Σ ` cs : short

t-null
Γc; Σ ` 0∗ : τ∗

t-new
Γc; Σ ` new θ : θ∗ t-new-str

Γc; Σ ` new struct N : N∗ t-new-ar
Γc; Σ ` e : t

Γc; Σ ` new θ[e] : θ[]∗

t-⊗

Γc; Σ ` e1 : t
Γc; Σ ` e2 : t

Γc; Σ ` (e1 ⊗ e2) : t
t-ptr-⊕

Γc; Σ ` e1 : θ[]∗
Γc; Σ ` e2 : t

Γc; Σ ` (e1 ⊕ e2) : θ[]∗
t-+-ptr

Γc; Σ ` e1 : t
Γc; Σ ` e2 : θ[]∗

Γc; Σ ` (e1 + e2) : θ[]∗

t-call
φc(f) = f(

−−→
x : θ)〈

−−−→
y : θ′′, l, λc, j〉, ∀ei ∈ ~e, θ′i ∈ ~θ′ : Γc; Σ ` ei : θ′i Σ ` ~θ′ <: ~θ Σ ` θ′′j <: θj

Γc; Σ ` f(~e) : θj

Figure 4: Type-correct MINC programs

where s = untags(u) +4 m and m = untag∗(v). Addition
of address/short, long/address, and address/long are analogously
defined, so that the sum of an integer and an address n∗ must fall
within the same range of π as n∗. The sum of two longs is simply
defined:

u+π v =

{
⊥ if u = ⊥ ∨ v = ⊥
tagl(untagl(u) +4 untagl(v)) otherwise

The sum of two shorts is defined likewise, to cumulatively give
the partial map +π : Val2 ⇀ Val , where Val is the set of all
tagged values. Subtraction −π : Val2 ⇀ Val is defined likewise
in a piecewise manner.

The environment and store maps have signatures ρ : Var 7→ N
and σ : N⊥ ⇀ Val⊥ where Var is a set of program variables and
N is assumed to exclude 0. We also assume σ(⊥) = ⊥. The SOS is
structured according to the three categories `, e and s. For brevity,
we only provide commentary on noteworthy rules.

The rules l-ptr, l-fld and l-ar check ρ(x) 6= 0 since location 0
is reserved as a sentinel. If these checks fail then auxiliary rules,
l-ptr-err, l-fld-err and l-ar-err, trigger an err state. For instance,

l-ptr-err
ρ(x) = 0

Σ; ~ρ; ρ ` 〈σ, π, ∗x〉 `−→ err

Rules l-fld-err and l-ar-err are defined analogously. Moreover, the
rules l-fld and l-ar check a ∈ ∪π′ to ensure the computed address
stays a stays within the range of an allocated memory region. Fur-
ther complementary rules trigger err if this does not hold, indeed
many rules have many error modes. The e-call rule represents an
extreme case: it has one error mode for the evaluation of each ei
and execution of the block labelled λc(l) can itself trigger an err.

Of particular note is e-op: if v1 is tagged as a pointer and v2

as an integer, the binary operation v1 ⊕π′′ v2 itself will err if
the resulting pointer falls outside the region enclosing v1. This is

trapped by a rule that complements e-op so as to propagate err in
the expected way.

Finally note how freshly allocate memory is marked as unini-
tialised in rules e-new, e-ar and e-str.

4.4 Type Safety
The MINC language is a type-safe variant of C. This means that
well-typed MINC programs do not get stuck. We can be formally
precise about this property in the usual way, stating preservation
and progress properties for the syntactic sorts of MINC.

Type safety depends on the notion of a store typing Ψ that
associates a type θ with every address a in the store σ. A store
σ is well-typed, denoted Σ; Ψ ` σ;π, iff

∀(a : θ) ∈ Ψ . Σ; Ψ;σ;π ` a : θ

Figure 6 defines the auxiliary judgements for well-typed addresses
and values. Similar to a store, an environment ρ is well-typed,
denoted Γc; Σ; Ψ ` ρ, iff

∀(x : θ) ∈ Γc . Σ; Ψ ` ρ(x) : θ ∗ ∧ ρ(x) 6= 0

For the sake of brevity, we state the two properties here only
for expressions. The other propositions and all proofs can be found
in the on-line appendix, which is available at http://kar.kent.
ac.uk/51459/.

Proposition 1 (Preservation of MINC Expressions). If Γc; Σ; Ψ `
ρ, Σ; Ψ ` σ;π, Γc; Σ ` e : θ and Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ 〈σ′, π′, v〉
then for some Ψ′ ⊇ Ψ:

Γc; Σ; Ψ′ ` ρ ∧ Σ; Ψ′ ` σ′;π′ ∧ Σ; Ψ′ ` v : θ

Proposition 2 (Progress of MINC Expressions). If Γc; Σ; Ψ ` ρ,
Σ; Ψ ` σ;π and Γc; Σ ` e : θ then: Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→
〈σ′, π′, v〉 or Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ err.

http://kar.kent.ac.uk/51459/
http://kar.kent.ac.uk/51459/

Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ 〈σ′, π′, a〉+ err l-var
Σ; ~ρ; ρ ` 〈σ, π, x〉 `−→ 〈σ, π, ρ(x)〉

l-ptr
ρ(x) 6= 0

Σ; ~ρ; ρ ` 〈σ, π, ∗x〉 `−→ 〈σ, π, σ(ρ(x))〉

l-fld
ρ(x) 6= 0 a = σ(ρ(x)) +⊥ c a ∈ ∪π

Σ; ~ρ; ρ ` 〈σ, π, x→ c〉 `−→ 〈σ, π, a〉
l-ar

Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ 〈σ′, π′, v〉
ρ(x) 6= 0 a = σ(ρ(x)) +⊥ v a ∈ ∪π′

Σ; ~ρ; ρ ` 〈σ, π, x[e]〉 `−→ 〈σ′, π′, a〉

Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ 〈σ′, π′, v〉+ err e-const
Σ; ~ρ; ρ ` 〈σ, π, c〉 e−→ 〈σ, π, c〉

e-lval
Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ 〈σ′, π′, a〉

Σ; ~ρ; ρ ` 〈σ, π, `〉 e−→ 〈σ′, π′, σ′(a)〉
e-amp

Σ; ~ρ; ρ ` 〈σ, π,&x〉 e−→ 〈σ, π, ρ(x)〉

e-new

a 6∈ dom(σ) ∪ {0}
σ′ = σ ◦ {a 7→ ⊥}

Σ; ~ρ; ρ ` 〈σ, π, new θ〉 e−→ 〈σ′, π, a〉
e-ar

Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ 〈σ′, π′, v〉
{a, . . . , a+ v − 1} ∩ (dom(σ′) ∪ {0}) = ∅
σ′′ = σ′ ◦ {a 7→ ⊥, . . . , a+ v − 1 7→ ⊥}

π′′ = π′ ∪ {[a, a+ v − 1]}
Σ; ~ρ; ρ ` 〈σ, π, new θ[e]〉 e−→ 〈σ′′, π′′, a〉

e-str

{a, . . . , a+ |Σ(N)| − 1} ∩ (dom(σ) ∪ {0}) = ∅
π′ = π ∪ {[a, a+ |Σ(N)| − 1]}

σ′ = σ ◦ {a 7→ ⊥, . . . , a+ |Σ(N)| − 1 7→ ⊥}
Σ; ~ρ; ρ ` 〈σ, π, new struct N〉 e−→ 〈σ′, π‘, a〉

e-op

Σ; ~ρ; ρ ` 〈σ, π, e1〉
e−→ 〈σ′, π′, v1〉

Σ; ~ρ; ρ ` 〈σ′, π′, e2〉
e−→ 〈σ′′, π′′, v2〉

v1 ⊗π′′ v2 = v

Σ; ~ρ; ρ ` 〈σ, π, (e1 ⊗ e2)〉 e−→ 〈σ′′, π′′, v〉

e-call

φc(f) = f(
−−→
x : θ)〈

−−−→
y : θ′, l, λc, j〉 ∀ei ∈ ~e : Σ; ~ρ; ρ ` 〈σi−1, πi−1, ei〉

e−→ 〈σi, πi, vi〉
| ~x |= n {~a, ~a′} ∩ (dom(σn) ∪ {0}) = ∅ ρ′ = {−−−→x 7→ a,

−−−−→
y 7→ a′} σ′ = σn ◦ {−−−→a 7→ v,

−−−−→
a′ 7→ ⊥}

Σ;λc; ~ρ, ρ; ρ′ ` 〈σ′, πn, λc(l)〉
s−→∗〈σ′′, π′, return〉

Σ; ~ρ; ρ ` 〈σ0, π0, f(~e)〉 e−→ 〈σ′′, π′, σ′′(ρ′(yj))〉

Σ;λc; ~ρ; ρ ` 〈σ, π, s〉 s−→ 〈σ′, π′, s′〉+ err s-assn

Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ 〈σ′, π′, a〉
Σ; ~ρ; ρ ` 〈σ′, π′, e〉 e−→ 〈σ′′, π′′, v〉

σ′′′ = σ′′ ◦ {a 7→ v}
Σ;λc; ~ρ; ρ ` 〈σ, π, (` := e); s〉 s−→ 〈σ′′′, π′′, s〉

s-goto
l ∈ dom(λc)

Σ;λc; ~ρ; ρ ` 〈σ, π, goto l〉 s−→ 〈σ, π, λc(l)〉

s-if-true

l ∈ dom(λc) v 6= ⊥ v 6= 0

Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ 〈σ′, π′, v〉
Σ;λc; ~ρ; ρ ` 〈σ, π, (if e goto l); s〉 s−→ 〈σ′, π′, λc(l)〉

s-if-false

l ∈ dom(λc) v 6= > v = 0

Σ; ~ρ; ρ ` 〈σ, π, e〉 e−→ 〈σ′, π′, v〉
Σ;λc; ~ρ; ρ ` 〈σ, π, (if e goto l); s〉 s−→ 〈σ′, π′, s〉

Figure 5: Structured Operational Semantics of MINC programs

µa ` ~b! v
µa ` 04 ! 0∗

(a : n∗) ∈ µa
µa ` a! n∗

µa ` ⊥4 ! ⊥a µa ` n2 ! ns µa ` ⊥2 ! ⊥s
µa ` n4 ! nl µa ` ⊥4 ! ⊥l

Figure 9: Value correspondence

5. Decompilation Relation
This section relates MINX and MINC programs through a decom-
pilation relation. The relation is spread out over three judgements,
one for each of the three main syntactic categories of MINX.

Instruction Decompilation Figure 7 defines the decompilation
judgement µΓ; Γc; Σ ` ι

ι
 ` := e which explains how to

decompile a MINX instruction ι into a MINC assignment ` := e.
Additional parameters to the judgement are a variable mapping
µΓ that relates MINX registers to MINC local variables, a MINC
typing environment Γc for those local variables, and a set of MINC
struct definitions Σ.

We do not have space to explain every rule in detail, so we
highlight a number of important aspects:

The judgement is defined by syntax-directed rules, as is usu-
ally the case for compilation and elaboration relations. The main
difference is that, as the latter usually define (partial) functions;
they are deterministic with typically one rule per syntactic con-
struct. Our decompilation judgement is non-deterministic and fea-
tures multiple rules per syntactic construct, one for each distinct
typing that can be assigned to the instruction. For instance, the
three rules tr-mov-ri1, tr-mov-ri2 and tr-mov-ri3 compile instruc-
tion movw ri, [rj] into either x := ∗y, x := y[0] or x := y → 0
depending on whether y has type θ∗, θ[]∗ or N∗.

The instruction widths w play an important role in restricting
the possibilities for the recovered MINC types. For instance, rule
tr-⊕-rc ensures that the width w of the arithmetic operation op⊗w
is identical to the size of the recovered primitive type t. Hence, a
width of 4 gives rise to long and a width of 2 to short.

On several occasions the rules have to make up for the differ-
ence in memory granularity between MINX and MINC. In partic-
ular, in MINC the stride between two array elements is always 1.
However, in MINX, the same stride depends on the size of the ele-
ments. Hence, rules like tr-⊕-rc for array pointer arithmetic convert
between a MINX stride of c = m ∗ sizeof (θ) and a corresponding
MINC stride of m.

When allocating a statically known amount of memory the rules
tr-alloc-rc1, tr-alloc-rc2 and tr-alloc-rc3 also exploit the sizes of
types to determine whether a primitive type, a particular struct or an
array is allocated. We only support the decompilation of dynamic
memory allocation for the instruction alloc ri, rj ∗ c where we can
statically verify that the amount of allocated memory is a multiple
of the memory size. This, among others, makes our decompilation
relation conservative and incomplete. It is a price we gladly pay
in order to provide strong guarantees about the validity of the
recovered types.

Basic Block Decompilation The top half of Figure 8 defines
the judgement µλ;µΓ; Γc; Σ ` b

b
 s for decompiling MINX

basic blocks b into MINC statements s. This judgement has one
additional parameter compared to the judgement for instructions:
the label map µλ relates MINX labels to their corresponding MINC
ones. This map is used for decompiling goto and if. As the rules
preserve the basic control flow from MINX to MINC and do not
affect the types directly, they are deterministic and syntax-directed.

Function Definition Decompilation The bottom half of Figure 8
defines the judgement Σ ` dx dc that decompiles a MINX
function definition dx into a MINC definition dc. The single rule of
this judgement sets up the variable and label maps, and decompiles
the basic blocks with respect to an appropriate typing environment.

5.1 Meta-Theoretical Properties
Our decompilation relation satisfies two strong properties that jus-
tify its relevance: 1) the produced MINC witness program is well-
typed, and 2) the witness has the same operational semantics as the
original MINX program. Taken together these two properties give
meaning to the statement that the original MINX program inhabits
the recovered types.

5.1.1 Well-Typing
The first claim states that the recovered witness program is well-
typed. This is asserted as three propositions, one for each of the
judgements.

Proposition 3 (Well-Typed Instruction Decompilation).
If µΓ; Γc; Σ ` ι ι

 ` := e, then for some θ1 and θ2:

Γc; Σ ` ` : θ1 ∧ Γc; Σ ` e : θ2 ∧ Σ ` θ2 <: θ1

Proposition 4 (Well-Typed Block Decompilation).
If µλ;µΓ; Γc; Σ ` b b

 s then Γc; Σ ` s.
Proposition 5 (Well-Typed Definition Decompilation).
If Σ ` dx dc then Σ ` dc.
For the proofs of these propositions, we refer to the appendix. Due
to the type safety of MINC, it follows that the witness program is
operationally well-behaved.

5.1.2 Memory Correspondence
The main semantic effect of both MINX and MINC programs is
a transformation of program memory. However, because MINX
and MINC programs act on very different memory structures, the
semantic correspondence is not readily expressed. We first need to
define how low-level and high-level memory structures correspond.
Then we can express semantics preservation as the preservation of
this correspondence.

There are three types of memory correspondence to consider:
MINX versus MINC values, MINX heaps versus MINC stores, and
MINX registers versus MINC local variables.

Value Correspondence Figure 9 defines the judgement µa `
~b! v that states the basic correspondence between a MINX byte
sequence ~b and a MINC value v. This judgement is parameterised
by an address map µa that relates MINX and MINC addresses.
The rules are obvious, relating 0 pointers, addresses, bottoms, and
numeric values of the appropriate byte sizes.

Registers versus Local Variables We denote that MINX register
banks ~R and MINC local variables ~ρ are pair-wise related with:

µa; ~µΓ;σ ` ~R! ~ρ

The relation is parameterized by an address map µa, register-
variable maps ~µΓ and a store σ. The relation stands for:

∀(r : x)w ∈ µΓ,i : ∃n∗ : (x : n∗) ∈ ρi :

∃v : (n∗ : v) ∈ σ ∧ ∃~b : ~b = Ri,0:w(r) ∧ µa ` ~b! v

The relation expresses that any related register r and local variable
x have associated values ~b and v that are related. The main com-
plication is that the local variables are store-mapped whereas the
registers are not.

Σ; Ψ;σ;π ` a : τ st-comp
Σ; Ψ ` σ(a) : θ

Σ; Ψ;σ;π ` a : θ

st-fld

Σ(N) = 〈θ0, . . . , θn−1〉
[a, a+ n− 1] ∈ π

∀i ∈ [0, n− 1].Σ; Ψ ` σ(a+ i) : θi

Σ; Ψ;σ;π ` a : N
st-ar

[a− n, a+m] ∈ π
∀i ∈ [−n,m].Σ; Ψ ` σ(a+ i) : θ

Σ; Ψ;σ;π ` a : θ[]

Σ; Ψ ` v : θ vt-bot
Σ; Ψ ` ⊥ : θ

vt-s
Σ; Ψ ` cs : short

vt-l
Σ; Ψ ` cl : long

vt-null
Σ; Ψ ` 0l : τ∗ vt-addr

(a : τ) ∈ Ψ

Σ; Ψ ` a : τ∗ vt-subt
Σ; Ψ ` v : θ1 Σ ` θ1 <: θ2

Σ; Ψ ` v : θ2

Figure 6: Well-typed addresses and values

Heaps versus Stores The MINX heap H and MINC store σ are
related with:

µa; νa;π; ~ρ ` H! σ

This relation summarises 6 different properties addressing 4 con-
cerns. Firstly, as in the previous cases, this relation is parameterised
by an address map µa that relates addresses in H with addresses in
σ. Obviously, these related addresses point to related values.

∀(a, n∗)w ∈ µa : ∃~b, v :

~b = H0:w(a) ∧ v = σ(a) ∧ µa ` ~b! v

Secondly, we have to contend with the difference in granularity
between MINX and MINC: While we can only address values as
a whole in MINC, MINX addresses individual bytes and can point
into the middle of a value. To bridge this gap, the address map
µa only covers the addresses in H that point at the first byte of
a value. The complementary header map νa relates each address
in H (especially those pointing into the middle of a value) to the
address of the first byte of the value and its width.

∀a ∈ dom(H) : ∃a′, w : νa(a) = 〈a′, w〉 ∧ (a′ + w) ≥ a
These header addresses are fixpoints of νa:

∀〈a,w〉 ∈ range(νa) : νa(a) = 〈a,w〉
Moreover, they are covered by µa:

∀〈a,w〉 ∈ range(νa) : ∃n∗ : (a : n∗)w ∈ µa
Thirdly, not all addresses in σ are related to an address in H . This
is a consequence of the discrepancy between registers and local
variables: the store-mapped local variables (i.e., those tracked in
~ρ or ρ) have no counterpart in H . Hence, they need not have a
counterpart in the relation.

∀n∗ ∈ (dom(σ)− range(~ρ, ρ)) : ∃a,w : (a : n∗)w ∈ µa
Finally, adjacent MINC addresses in a range tracked by π must
be related to adjacent addresses in MINX (taking into account the
width w of the value).

∀[n∗, n∗ + c] ∈ π : ∀i ∈ [0, c− 1] : ∃a, a′, w, w′ :

a+ w = a′ ∧ (a, n∗ + i)w ∈ µa ∧ (a′, n∗ + i+ 1)w′ ∈ µa

5.1.3 Semantics Preservation
With the memory relations in place we can state one important
aspect of semantics preservation as: the original MINX program
and the corresponding decompiled MINC program take related
memories to related memories.

Proposition 6 (Preservation of Related Memory for Instructions).
If

• µΓ; Γc; Σ ` ι ι
 ` := e

• Γc; Σ; Ψ ` ρ
• Σ; Ψ ` σ;π
• µa; νa;π; ~ρ, ρ ` H! σ
• µa; ~µΓ, µΓ;σ ` ~R,R! ~ρ, ρ
• ~R ` 〈H,R, ι〉 ι−→ 〈H ′, R′〉,
• Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ 〈σ′, π′, a〉, and
• Σ; ~ρ; ρ ` 〈σ′, π′, e〉 e−→ 〈σ′′, π′′, v〉

then for some µ′a ⊇ µa and ν′a ⊇ νa:

• µ′a; ~µΓ, µΓ;σ′ ◦ {a 7→ v} ` ~R,R! ~ρ, ρ
• µ′a; ν′a;π′; ~ρ, ρ ` H ′! σ′ ◦ {a 7→ v}

A second aspect of the semantics preservation is that, if the
MINX program does not get stuck, the MINC program may get
stuck only through a violation of memory that is guarded by π.

Proposition 7 (Preservation of Progress for Instructions). If

• µΓ; Γc; Σ ` ι ι
 ` := e

• Γc; Σ; Ψ ` ρ
• Σ; Ψ ` σ;π
• µa; νa;π; ~ρ, ρ ` H! σ
• µa; ~µΓ, µΓ;σ ` ~R,R! ~ρ, ρ
• ~R ` 〈H,R, ι〉 ι−→ 〈H ′, R′〉

then

• Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ err or
• Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ 〈σ′, π′, a〉 and Σ; ~ρ; ρ ` 〈σ′, π′, e〉 e−→
err, or

• Σ; ~ρ; ρ ` 〈σ, π, `〉 `−→ 〈σ′, π′, a〉 and Σ; ~ρ; ρ ` 〈σ′, π′, e〉 e−→
〈σ′′, π′′, v〉.

There are similar such propositions for basic blocks and for func-
tion definitions. Again we refer to the appendix for the proofs.

6. Implementation
The decompilation relation is a conceptual device, literally a rela-
tion, which details what it means for a MINX program to be in
correspondence with a MINC program. An algorithm, however,
can be derived for solving a problem by adding control to Horn

µΓ; Γc; Σ ` ι ι
 ` := e tr-⊕-r*1

(ri : x)4, (rj : y)4 ∈ µΓ (x : θ[]∗), (y : long) ∈ Γc
c = m ∗ sizeof (θ) Γc; Σ ` m : long

µΓ; Γc; Σ ` op⊕4 ri, rj ∗ c
ι
 x := x⊕ (y ∗m)

tr-⊕-r*2

(ri : x)w ∈ µΓ (rj : y)w ∈ µΓ

(x : t) ∈ Γc (y : t) ∈ Γc Γc; Σ ` c : t

µΓ; Γc; Σ ` op⊕w ri, rj ∗ c
ι
 x := x⊕ (y ∗ c)

tr-⊕-rc

(ri : x)4 ∈ µΓ (x : θ[]∗) ∈ Γc
c = m ∗ sizeof (θ) Γc; Σ ` m : t

µΓ; Γc; Σ ` op⊕4 ri, c
ι
 x := x⊕m

tr-⊗-rc

(ri : x)w ∈ µΓ (x : t) ∈ Γc
sizeof (t) = w Γc; Σ ` c : t

µΓ; Γc; Σ ` op⊗w ri, c
ι
 x := x⊗ c

tr-⊗-rr

(ri : x)w ∈ µΓ (rj : y)w ∈ µΓ

(x : t) ∈ Γc (y : t) ∈ Γc sizeof(t) = w

µΓ; Γc; Σ ` op⊗w ri, rj
ι
 x := x⊗ y

tr-mov-rc

(ri : x)w ∈ µΓ (x : t) ∈ Γc
Γc; Σ ` c : t sizeof (t) = w

µΓ; Γc; Σ ` movw ri, c
ι
 x := c

tr-mov-r0
(ri : x)4 ∈ µΓ (x : τ∗) ∈ Γc

µΓ; Γc; Σ ` mov4 ri, 0
ι
 x := 0

tr-mov-rr

(ri : x)w ∈ µΓ (rj : y)w ∈ µΓ (x : θ1) ∈ Γc (y : θ2) ∈ Γc
sizeof (θ1) = sizeof (θ2) = w Σ ` θ2 <: θ1

µΓ; Γc; Σ ` movw ri, rj
ι
 x := y

tr-mov-ri1

(ri : x)w, (rj : y)4 ∈ µΓ (x : θ1), (y : θ2∗) ∈ Γc
Σ ` θ2 <: θ1 sizeof (θ1) = sizeof (θ2) = w

µΓ; Γc; Σ ` movw ri, [rj]
ι
 x := ∗y

tr-mov-ir1

(ri : x)4, (rj : y)w ∈ µΓ (x : θ1∗), (y : θ2) ∈ Γc
Σ ` θ2 <: θ1 sizeof (θ1) = sizeof (θ2) = w

µΓ; Γc; Σ ` movw [ri], rj
ι
 ∗x := y

tr-mov-ri2

(ri : x)w, (rj : y)4 ∈ µΓ (x : θ1), (y : θ2[]∗) ∈ Γc
Σ ` θ2 <: θ1 sizeof (θ1) = sizeof (θ2) = w

µΓ; Γc; Σ ` movw ri, [rj]
ι
 x := y[0]

tr-mov-ir2

(ri : x)4, (rj : y)w ∈ µΓ (x : θ1[]∗), (y : θ2) ∈ Γc
Σ ` θ2 <: θ1 sizeof (θ1) = sizeof (θ2) = w

µΓ; Γc; Σ ` movw [ri], rj
ι
 x[0] := y

tr-mov-ri3

(ri : x)w, (rj : y)4 ∈ µΓ (x : θ), (y : N∗) ∈ Γc
Σ(N) = 〈θ0, . . . , θn−1〉 Σ ` θ0 <: θ

sizeof (θ0) = sizeof (θ) = w

µΓ; Γc; Σ ` movw ri, [rj]
ι
 x := y → 0

tr-mov-ir3

(ri : x)4, (rj : y)w ∈ µΓ) (x : N∗), (y : θ) ∈ Γc
Σ(N) = 〈θ0, . . . , θn−1〉 Σ ` θ <: θ0

sizeof (θ0) = sizeof (θ) = w

µΓ; Γc; Σ ` movw [ri], rj
ι
 x→ 0 := y

tr-mov-ri+1

(ri : x)w, (rj : y)4 ∈ µΓ (x : θ1), (y : θ2[]∗) ∈ Γc
sizeof (θ1) = sizeof (θ2) = w Σ ` θ2 <: θ1

c = m ∗ sizeof (θ) Γc; Σ ` m : t

µΓ; Γc; Σ ` movw ri, [rj + c]
ι
 x := y[m]

tr-mov-i+r1

(ri : x)4, (rj : y)w ∈ µΓ (x : θ1[]∗), (y : θ2) ∈ Γc
sizeof (θ1) = sizeof (θ2) = w Σ ` θ2 <: θ1

c = m ∗ sizeof (θ) Γc; Σ ` m : t

µΓ; Γc; Σ ` movw [ri + c], rj
ι
 x[m] := y

tr-mov-ri+2

(ri : x)w, (rj : y)4 ∈ µΓ (x : θ), (y : N∗) ∈ Γc
Σ(N) = 〈θ0, . . . , θn−1〉 c =

∑m−1
k=0 sizeof (θk)

Σ ` θm <: θ sizeof (θm) = sizeof (θ) = w

µΓ; Γc; Σ ` movw ri, [rj + c]
ι
 x := y → m

tr-mov-i+r2

(ri : x))4, (rj : y)w ∈ µΓ (x : N∗), (y : θ) ∈ Γc
Σ(N) = 〈θ0, . . . , θn−1〉 c =

∑m−1
k=0 sizeof (θk)

Σ ` θ <: θm sizeof (θm) = sizeof (θ) = w

µΓ; Γc; Σ ` movw [ri + c], rj
ι
 x→ m := y

tr-alloc-r*

(ri, x)4 ∈ µΓ (rj , y)sizeof (t) ∈ µΓ Γc; Σ ` m : t
(x : θ[]∗) ∈ Γc (y : t) ∈ Γc c = sizeof (θ) ∗m
µΓ; Γc; Σ ` alloc ri, rj ∗ c

ι
 x := new θ[y ∗m]

tr-alloc-rc3

(ri, x)4 ∈ µΓ (x : θ[]∗) ∈ Γc
c = m ∗ sizeof (θ) Γc; Σ ` m : t

µΓ; Γc; Σ ` alloc ri, c
ι
 x := new θ[m]

tr-alloc-rc1

(ri, x)4 ∈ µΓ sizeof (θ) = c (x : θ∗) ∈ Γc

µΓ; Γc; Σ ` alloc ri, c
ι
 x := new θ

tr-alloc-rc2

(ri, x)4 ∈ µΓ sizeof (N) = c (x : N∗) ∈ Γc

µΓ; Γc; Σ ` alloc ri, c
ι
 x := new struct N

tr-call

φc(f) = f(
−−→
x : θ)〈

−−−→
y : θ′, l, λc, j〉 (ru : u)sizeof (θu) ∈ µΓ

−−−−−−−−−−→
(rv : v)sizeof (θv) ∈ µΓ

(u : θu) ∈ Γc
−−−−→
(v : θv) ∈ Γc Σ ` θ′j <: θu Σ ` ~θv <: ~θ

µΓ; Γc; Σ ` call ru, f,
−→rv

ι
 u := f(~v)

Figure 7: Decompilation of instructions

µλ;µΓ; Γc; Σ ` b b
 s tr-ret

µλ;µΓ; Γc; Σ ` ret
b
 return

tr-goto
µλ(a) = l

µλ;µΓ; Γc; Σ ` goto a
b
 goto l

tr-if

µλ(a) = l µΓ(ri) = x (x : θ) ∈ Γc

sizeof(θ) = w µλ;µΓ; Γc; Σ ` b b
 s

µλ;µΓ; Γc; Σ ` (ifw ri goto a); b
b
 (if x goto l); s

tr-instr

µΓ; Γc; Σ ` ι ι
 ` := e

µλ;µΓ; Γc; Σ ` b b
 s

µλ;µΓ; Γc; Σ ` ι; b b
 ` := e; s

Σ ` dx dc tr-def

µΓ = {−−−−→rx 7→ x,−−−−→ry 7→ y} Γc = {
−−→
x : θ,

−−−→
y : θ′} ryj ∈ −→ry a ∈ dom(λx)

µλ = {dom(λx) 7→ dom(λc)} µλ(a) = l ∀(a 7→ l) ∈ µλ : µλ;µΓ; Γc; Σ ` λx(a)
b
 λc(l)

Σ ` 〈f,−→rx,−→ry , a, λx, j〉 f(
−−→
x : θ)〈

−−−→
y : θ′, l, λc, j〉

Figure 8: Decompilation of basic blocks and function definitions

iterative_sum {
mov4 r0, 0 ;
goto .BB1

.BB0:
mov4 r2, [r1] ;
add4 r0, r2 ;
mov4 r1, [r1 + 4] ;

.BB1:
if4 r1 goto .BB0 ;
ret

} <(r1), r0, (r2)>

Figure 10: Iterative summation of a linked list in MINX

struct struct1 {
long;
struct1*;

};

iterative_sum(struct1* x) {
long y1, y2
0: y1 = 0;

goto 2
1: y2 = x->0;

y1 = y1 + y2;
x = x->1;

2: if x goto 1;
return y1

}

Figure 11: Iterative summation of a linked list in MINC

clauses that specify the problem [14]. Following this methodol-
ogy, we have translated the decompilation relation rule-for-rule (al-
most verbatim) into Horn clauses, programming the control using
Constraint Handling Rules (CHR) [8], which is an extension to
Prolog. Control defaults to leftmost goal selection, with the ex-
ception of predicates annotated as CHR. These are interpreted as
constraints, which reside in a constraint store, and interact with
one another to realise propagation, delay non-deterministic choice,
and thereby avoid needless backtracking. As an illustration, con-
sider the struct(N,c,m,θ) constraint which holds iff Σ(N) =
〈θ0, . . . , θn−1〉, c =

∑m−1
i=0 sizeof(θi) and θ = θm. Two such

constraints in the store that share the sameN can be combined into

one provided they share the same byte offset c, an action that both
simplifies the store and performs propagation. This can be specified
in CHR as:

struct(N,C,M1,Ty1) \ struct(N,C,M2,Ty2) <=>
M1 = M2, Ty1 = Ty2.

Furthermore, given a CHR constraint sizeOf(θ,w) that holds
iff w = sizeof(θ), and two constraints struct(N,c,m,θ) and
struct(N,c + w,m′,θ′) it follows m′ = m + 1. This form of
propagation can be realised in CHR using:

struct(N,C1,M1,Ty1), struct(N,C2,M2,_Ty2) ==>
nonvar(C1), nonvar(C2), sizeOf(Ty1,W),
nonvar(W), C2 =:= C1 + W
|
M2 #= M1 + 1.

CHR rules are likewise used to express the subtyping relation. In
all, this gives a solver for computing a witness and its type, in less
than 900 LOC, but more importantly, derives one that is faithful to
the rules of the decompilation relation.

To generate input for the solver, the self-hosting ANSI C89
compiler ucc [30] was retargeted to generate MINX. Our deriva-
tive, dubbed minxcc, supports the core features of C89. To stay
within MINX, minxcc applies some rather unusual transforma-
tions. Each constant string, which is normally encoded as a global
pointer literal, is converted into a function that returns a pointer
to newly allocated heap memory, that contains the string. malloc
(and its friends) are replaced by the alloc instruction, while calls
to free are removed completely. Memory thus grows as execution
proceeds, exactly as specified in Fig 5. Mathematical operations
such as =< and logical operations such as xor are reduced to MINX
operations using equivalences taken from Hacker’s Delight [11].

As a sanity check, we wrote a Haskell interpreter for MINX,
following the SOS semantics of Fig 2. The results of interpreting
the MINX code, on various inputs, were then checked against those
obtained by compiling the benchmarks using gcc, which was taken
as ground truth. For the satisfaction of going full circle, a translator
was written in Haskell to convert the MINC witness program into
C, for testing with gcc. Each benchmark was subject to these two
levels of checking.

The solver requires input to be pre-processed and presented in
the MINX language. Figure 10 lists (pretty-printed) MINX code
for summing the elements of a linked list. The arguments, return
register and locals, denoted−−→rarg, rret,−→rloc in Section 3, correspond
to (r1), r0 and (r2) respectively in the code listing. The mapping
λ′x is represented using the .BB0 and .BB1 labels to directly tag
their corresponding block. Note that blocks can overlap. The label

LoC original recovered time
benchmark C MINX structs solns structs (mS)
aatree 315 2,734 1 1 1 6,543
avltree 269 2,188 1 1 2 2,041
binheap 184 2,558 2 2 2/1 109
binomial 303 3,732 2 2 5/4 249
hashsep 256 1,017 2 4 6/5/6/5 77
hashquad 260 977 2 4 2/3/2/2 49
kdtree 112 891 1 1 1 1,527
leftheap 182 762 1 1 1 825
list 262 829 1 2 2/1 1,054
mergesort 135 664 1 1 1 628
pairheap 298 3,216 1 1 2 3,316
queue 188 1,960 1 1 1 886
redblack 317 2,918 1 2 3/2 193
sets 120 355 0 1 0 276
skip 239 2,616 1 1 1 2,089
sort 364 2,339 0 1 0 2,904
splay 332 2,648 1 1 2 4,975
stackar 161 1,680 1 1 1 640
stackli 140 1,270 1 2 2/2 464
treap 288 2,580 1 1 2 3,834
tree 208 1,104 1 1 2 2,158

Figure 12: Solutions and Recovered Structures

of the entry block, a0, is left implicit by adopting the convention
that the first block is always the entry block.

Figure 11 presents the MINC witness program generated by
the solver, again pretty-printed for human comprehensibility since
the solver represents the witness as an abstract syntax tree. The
local variables, denoted

−−−→
y : θ′ in Section 4, are given immediately

before the entry block. The mapping λc is represented, again by
using labels to tag the blocks. The index j, used to identify which
local variable is returned in Section 4, is identified by printing each
return statement with the variable yj .

7. Evaluation
The solver was deployed on a suite of textbook [31] programs,
chosen because of their use of data-structures. Figure 12 lists the
benchmarks, complete with LoC for the C and the MINX assem-
bly files. The solns column records the number of type assignment
and witness program pairs generated by the solver. The original
structs column indicates the number of struct types defined in the
benchmark, whereas recovered structs records the number of struct
definitions in each of the solutions. Thus 6/5/6/5, for example, in-
dicates that the first solution has 6 recovered structs, the second has
5, the third 6, and the fourth 5; backtracking enabling all solutions
to be enumerated. The benchmarks were run on a single core In-
tel Atom Z540 at 1.86GHz with 2GB of RAM. The benchmarks,
assembly files, and witnesses (which embed the recovered types)
are all available in a second on-line appendix, that is available at
http://kar.kent.ac.uk/51448/.

Observe that some benchmarks have more than one solution and
some solutions have a different number of struct definitions than
the original program. This is due to several factors: Homogeneous
structs, where every (accessed) field has the same type, cannot be
distinguished from arrays, and therefore can be typed either as an
array or a struct. This issue is exhibited by the binheap benchmark.

When the same struct type is used in separate parts of a program
(e.g., in functions that are never called) our decompiler generates
distinct copies of the struct. In most cases the definitions are iden-
tical (as in the tree benchmark), however a function may not ac-

cess every field of a struct, leading to an under-constrained type as-
signment problem and a struct definition that omits the unaccessed
fields, as in the treap and avltree benchmarks. Combining these
issues can result in multiple solutions that differ in their types and
number of structs, which arises in the binomial benchmark.

The key point, however, is not visible from the table: there ex-
ists one witness program whose regenerated types are identical to
those of the original benchmark. Moreover, for benchmarks with
multiple solutions, every witness has types compatible with those
of the original program (in the sense that arrays are compatible with
homogeneous structs). In addition, all recursive types in every wit-
ness are present in the original, and every recursive type present in
the original appears in every witness. Furthermore, when translated
back into C, each witness behaves as the original benchmark.

8. Related Work
A self-contained introduction to type recovery is given in [29,
chapter 5], which summarises the problem as “The . . . problem
for a decompiler is to associate each piece of data with a high-
level type”. The author, like others [6, 28], introduces a dataflow
analysis over type lattice of primitive types, but accepted wisdom is
to formulate type inference as constraint solving because dataflow
analysis classically deals with unidirectional flows.

Dynamic type recovery Dynamic techniques have been suggested
for type recovery [18], in which types are reconstructed from an
execution trace. Each memory location accessed by the program is
tagged with a timestamp because the same location can store values
of different types over its lifetime. Each location and timestamp
pair is then assigned a type, in either the on-line or off-line phases
of the type recovery algorithm. In the on-line phase known types
are propagated to the pairs, as a value which inhabits a type,
is stored in a location. However, the type may remain unknown
until the control encounters a system call or a library call, or
some machine instruction, whose arguments or operands expose
the type. The on-line phase is thus augmented with an off-line phase
which propagates type assignment against the control to resolve
any unassigned pair. The method requires an oracle to supervise
the selection of the trace, and an examination of one trace will fail
to infer types that hold universally across the whole program.

Somewhat surprisingly, Bayesian unsupervised learning has
been applied to recognise structure in memory images [5]. The
memory image is scanned, looking for all pointers, which are then
used to locate the positions of objects and their size, which are
bounded by the distance to the next object. Unsupervised learning
is then used to classify malware according to its memory layout, a
technique that could be taken further with static type recovery.

Recursive datatypes Mycroft [21] recognised that type recon-
struction could rule out inconsistent decompilation steps and
thereby aid program reconstruction. This link is formalised in our
decompilation relation that is the centrepiece of our formalisation.
His work was inspired by the desire to synthesise datatypes from
register transfer language (RTL) code generated from BCPL, which
itself is untyped, not distinguishing between arrays and structures.
He discussed the issue of padding, which arises when some of the
fields of a structure, but not all, can be inferred, as well as proposing
a type unification algorithm for synthesising a recursive datatype
when a type variable is unified with a term containing it.

This approach has been reexamined though the perspective of
SMT [25, 26] using the theory of rational trees (cyclic unification)
[10], so that the solved form can directly encode the inferred re-
cursive datatypes. Operations such as addition can be assigned one
of three possible types, depending on whether the operands are an
integer and a pointer, or vice versa, or simply two integers. This
case splitting can be encoded propositionally and the theory used

http://kar.kent.ac.uk/51448/

for datatype assembly. Neither of these works, however, formally
relate the recovered types to the binary itself. They focus on solv-
ing rather than semantics.

SecondWrite [7] extends work on variable recovery [1, 2] with
so-called best effort pointer analysis [7, Section 5.2] to infer some
datatypes: they “dig into the points-to set to discover if it is pointing
to an address which is declared as the starting point of a structure”.
Generic types are used for symbols for which they cannot infer
types, and type casts are introduced to convert the generic type to
the actual types used in an operation.

Following the idea that “well-typed programs cannot go wrong”
[19], type recovery has been muted as a check for the validity of
low-level code [24]. Recursive types are recovered using a rational-
tree solver from the low-level typeless template code of a graph
reduction machine. If the solver fails, the code is judged unsafe.

Verified decompilation and disassembly Decompilation is not al-
ways to C: Java bytecode has been decompiled into recursive func-
tions, based on type theory [12], which is amenable to formal
reasoning. Worthy of particular note, is the decompilation of ma-
chine code into the language of HOL4 [22]. With a view to prov-
ing full functional correctness, machine code is decompiled into
tail-recursive functions. These functions describe the effect of the
machine code, yet offer a layer of abstraction above it. Properties
proved for the function are, by an automatically derived theorem,
related to the original machine code, so the decompiler does not
need to be proved correct. Recursive predicates could be defined in
HOL4 to assert in that memory conformed to a recursive datatype,
but for the purposes for engaging with the reverse engineer, it seems
more natural to decompile to a type-safe dialect of C.

Disassembly, the act of decoding the bit patterns of machine in-
structions into a textual representation, is itself non-trivial for self-
modifying code. Self-modification is used to disguise malware but
also arises in JIT compilation. In general, disassembly requires in-
direct jump targets to be computed, which can be approximated by
abstract interpretation [13]. In the case of self modifying code, each
memory write needs to be checked to determine how it modifies the
code base. Modifications to the code base themselves entail a form
of abstract decoding in which the analyser does not recover the
exact instruction, but a collection of applicable instructions. Nev-
ertheless disassembly has been formalised [3], though we consider
self-modification to be beyond the scope of our study.

Trusted compilation Further afield, is the wide body of work on
trusted compilation, most notably represented by the CompCert
project that produced a fully certified optimising C compiler [16].
The CompCert compiler transforms source code into machine code
incrementally through a large number of intermediate languages,
each of which is designed to handle a specific compilation stage
such as common subexpression elimination, register allocation or
control flow linearisation. Correctness is verified at each successive
level of transformation with proofs created using a proof assistant.
Where CompCert aims at proving semantic correctness of these
optimisations, our interest is in type preservation and any witness,
no matter how closely it mirrors the binary, is sufficient for our type
correctness argument.

Typed Assembly Language (TAL) [20] represents another ap-
proach to trusted compilation, where the aim is to prove that type
consistency is maintained through compilation to an assembly lan-
guage that can be type checked to prove safety properties of the
executable code. The limitation is that no machine exists that can
execute TAL, so as a compromise the code is type checked either
when assembled to machine code or by a runtime loader that recog-
nises a special typed object format. In contrast we have provided a
type inference algorithm for assembler that allows type checking
without the presence of any explicit type information in the binary.

9. Discussion
System and library calls provide a rich source of type information,
from both their arguments and return types [18]. In the short term,
we plan to harvest these types and exploit them in our solver. We
will also relax the restrictions on the MINX calling convention, us-
ing dataflow analysis to identify arguments, that is, what is written
before and what is read after a function call [1, 7]. To aid read-
ability, we will also recognise the shape of certain (reoccurring)
structures to refine the auto-generated structure and field names.

We only recover types if there exists a well-typed witness that
corresponds semantically to the binary. This is not a limitation; it
is a deliberate design choice. While not a problem for our bench-
marks, the binary could be compiled from source that includes cast
conversions, which are erased in the binary, but induce type con-
flicts. With a view to deployment, we intend to extend MINC to
union types but preserve the type safety of MINC by raising a type
error if a union field value is out of range. Recent work on the au-
tomatic localisation of type errors [23] has shown how (weighted)
MaxSMT [17] can be applied to compute type conflicts that are
minimal, subject to a compiler-specific ranking criterion. The idea
is to minimise the sum of the weights of the unsatisfied (type) con-
straints. Since type recovery can been formulated as SMT [26], we
intend to apply error localisation to introduce a union type when-
ever a conflict is encountered, but do so in a way that minimises
impact on the witness. This is a medium term goal.

The step beyond inferring an arbitrary well-typed witness for
the binary, is to infer a witness that is comprehensible to the reverse
engineer. Enriching the decompilation relation with more rules,
possibly even for sequences of instructions, would increase the
class of MINC programs that can be regenerated, and provide the
solver with latitude to select one decompilation over another. As a
long term research goal, we intend to explore how preferences [17]
can steer the solver towards emitting a more intelligible witness,
though it is far from clear how this can be quantified.

10. Conclusions
We have answered the fundamental question of how to derive types
from a binary executable that truly have semantic meaning. Our
answer is both principled and unique in that it derives a high-level
witness program in concert with the types (provided one exists).
We prove that the witness inhabits the inferred types, and establish
a notion of memory consistency with the binary, thereby showing
that the binary conforms to the inferred types. Apart from establish-
ing type correctness, which is a first step towards certified decom-
pilation, the construction also yields a type-based decompiler. We
have evaluated the decompiler on more than 20 textbook programs
and, for all, have recovered a witness program in a type-safe dialect
of C, complete with the original recursive datatypes.

Acknowledgments
This work was supported by grant EP/K031929/1 funded by GCHQ
in association with EPSRC, and partly funded by the Flemish Fund
for Scientific Research (FWO).

References
[1] G. Balakrishnan and T. Reps. Analyzing Memory Accesses in x86

Executables. In CC, LNCS, pages 5–23. Springer, 2004.
[2] G. Balakrishnan and T. Reps. Divine: Discovering Variables in Exe-

cutables. In VMCAI, LNCS, pages 1–28. Springer, 2007.
[3] S. Blazy, V. Laporte, and D. Pichardie. Verified Abstract Interpretation

Techniques for Disassembling Low-level Self-modifying Code. In
ITP, volume 8558 of LNCS, pages 128–143, 2014.

[4] E. Chan, S. Venkataraman, N. Tkach, K. Larson, A. Gutierrez, and
R. H. Campbell. Characterizing Data Structures for Volatile Forensics.
In Systematic Approaches to Digital Forensic Engineering, pages 1–9,
2011.

[5] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging For Data
Structures. In USENIX Symposium on Operating Systems Design and
Implementation, pages 231–244. USENIX, 2008.

[6] E. Dolgova and A. Chernov. Automatic Reconstruction of Data types
in the Decompilation Problem. Programming and Computer Software,
35(2):105–119, 2009.

[7] K. Elwazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scal-
able Variable and Data Type Detection in a Binary Rewriter. In PLDI,
pages 51–60, 2013.

[8] T. Frühwirth. Constraint Handling Rules. CUP, 2009.
[9] I. Guilfanov. A Simple Type System for Program Reengineering. In

WCRE, pages 357–. IEEE Computer Society, 2001.
[10] J. Jaffar. Efficient Unification over Infinite Terms. New Generation

Computing, 2(3):207–219, 1984.
[11] H. S. Warren Jr. Hacker’s Delight. Addison-Wesley, 2002.
[12] S. Katsumata and A. Ohori. Proof-Directed De-compilation of Low-

Level Code. In ESOP, volume 2028 of LNCS, pages 352–366.
Springer, 2001.

[13] J. Kinder, H. Veith, and F. Zuleger. An Abstract Interpretation-Based
Framework for Control Flow Reconstruction from Binaries. In VM-
CAI, volume 5403 of LNCS, pages 214–228. Springer, 2009.

[14] R. Kowalski. Algorithm = Logic + Control. CACM, 22(7):424–436,
1979.

[15] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled Reverse Engi-
neering of Types in Binary Programs. In NDSS. The Internet Society,
2011.

[16] X. Leroy. Formal Certification of a Compiler Back-end or: Program-
ming a Compiler with a Proof Assistant. In POPL, pages 42–54, 2006.

[17] C. M. Li and F. Manyà. MaxSAT, Hard and Soft Constraints. In
Handbook of Satisfiability, pages 613–631. IOS Press, 2009.

[18] Z. Lin, X. Zhang, and D. Xu. Automatic Reverse Engineering of Data
Structures from Binary Execution. In NDSS. The Internet Society,
2010.

[19] R. Milner. A Theory of Type Polymorphism in Programming. Journal
of Computer and System Science, 17:348–375, 1978.

[20] G. Morrisett and D. Walker. From System F to Typed Assembly
Language. TOPLAS, 21(3):527–568, 1999.

[21] A. Mycroft. Type-Based Decompilation (or Program Reconstruction
via Type Reconstruction). In ESOP, volume 1576 of LNCS, pages
208–223. Springer, 1999.

[22] M. O. Myreen, M. J. C. Gordon, and K. Slind. Machine-Code Verifi-
cation for Multiple Architectures - An Application of Decompilation
into Logic. In FMCAD, pages 1–8, 2008.

[23] Z. Pavlinovic, T. King, and T. Wies. Finding Minimum Type Error
Sources. In OOPSLA, pages 525–542. ACM Press, 2014.

[24] M. P. Peres Cervantes. Static Methods to Check Low-Level Code for
a Graph Reduction Machine. PhD thesis, University of York, 2014.
http://etheses.whiterose.ac.uk/id/eprint/6248.

[25] E. Robbins, J. Howe, and A. King. Theory Propagation and Reifica-
tion. Science of Computer Programming, 111:3–22, 2015.

[26] E. Robbins, J. M. Howe, and A. King. Theory Propagation and
Rational-Trees. In PPDP, pages 193–204. ACM Press, 2013.

[27] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerabil-
ity Discovery. Addison-Wesley, 2007.

[28] K. Troshina, Y. Derevenets, and A. Chernov. Reconstruction of com-
posite types for Decompilation. In Working Conference on Source
Code Analysis and Manipulation, pages 179–188, 2010.

[29] M. J. Van Emmerik. Static Single Assignment for Decompilation. PhD
thesis, University of Queensland, 2007. http://espace.library.
uq.edu.au/view/UQ:158682.

[30] W. Wang. Ucc, 2014. http://ucc.sourceforge.net/.
[31] M. A. Weiss. Data Structures and Algorithm Analysis in C. Addison-

Wesley, 1996.

http://etheses.whiterose.ac.uk/id/eprint/6248
http://espace.library.uq.edu.au/view/UQ:158682
http://espace.library.uq.edu.au/view/UQ:158682
http://ucc.sourceforge.net/

	Introduction
	System and Paper Overview
	The MinX Language
	Memory
	Syntax
	Structured Operational Semantics

	The MinC Language
	Syntax
	Type System
	Semantics
	Type Safety

	Decompilation Relation
	Meta-Theoretical Properties
	Well-Typing
	Memory Correspondence
	Semantics Preservation

	Implementation
	Evaluation
	Related Work
	Discussion
	Conclusions

