Abstract

With the purpose of explaining recent experimental findings, we study the distribution A(λ)A(\lambda) of distances λ\lambda traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the friction coefficient μ\mu is a random function of position is considered. The problem of finding A(λ)A(\lambda) is equivalent to a First-Passage-Time problem for a one-dimensional random walk with nonzero drift, whose exact solution is well-known. From the exact solution of this problem we conclude that: a) for inclination angles θ\theta less than \theta_c=\tan(\av{\mu}) the average traversed distance \av{\lambda} is finite, and diverges when θθc\theta \to \theta_c^{-} as \av{\lambda} \sim (\theta_c-\theta)^{-1}; b) at the critical angle a power-law distribution of slidings is obtained: A(λ)λ3/2A(\lambda) \sim \lambda^{-3/2}. Our analytical results are confirmed by numerical simulation, and are in partial agreement with the reported experimental results. We discuss the possible reasons for the remaining discrepancies.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions