2,408 research outputs found
Diagnosability of Fuzzy Discrete Event Systems
In order to more effectively cope with the real-world problems of vagueness,
{\it fuzzy discrete event systems} (FDESs) were proposed recently, and the
supervisory control theory of FDESs was developed. In view of the importance of
failure diagnosis, in this paper, we present an approach of the failure
diagnosis in the framework of FDESs. More specifically: (1) We formalize the
definition of diagnosability for FDESs, in which the observable set and failure
set of events are {\it fuzzy}, that is, each event has certain degree to be
observable and unobservable, and, also, each event may possess different
possibility of failure occurring. (2) Through the construction of
observability-based diagnosers of FDESs, we investigate its some basic
properties. In particular, we present a necessary and sufficient condition for
diagnosability of FDESs. (3) Some examples serving to illuminate the
applications of the diagnosability of FDESs are described. To conclude, some
related issues are raised for further consideration.Comment: 14 pages; revisions have been mad
Inviscid dynamical structures near Couette flow
Consider inviscid fluids in a channel {-1<y<1}. For the Couette flow
v_0=(y,0), the vertical velocity of solutions to the linearized Euler equation
at v_0 decays in time. At the nonlinear level, such inviscid damping has not
been proved. First, we show that in any (vorticity) H^{s}(s<(3/2)) neighborhood
of Couette flow, there exist non-parallel steady flows with arbitrary minimal
horizontal period. This implies that nonlinear inviscid damping is not true in
any (vorticity) H^{s}(s<(3/2)) neighborhood of Couette flow and for any
horizontal period. Indeed, the long time behavior in such neighborhoods are
very rich, including nontrivial steady flows, stable and unstable manifolds of
nearby unstable shears. Second, in the (vorticity) H^{s}(s>(3/2)) neighborhood
of Couette, we show that there exist no non-parallel steadily travelling flows
v(x-ct,y), and no unstable shears. This suggests that the long time dynamics in
H^{s}(s>(3/2)) neighborhoods of Couette might be much simpler. Such contrasting
dynamics in H^{s} spaces with the critical power s=(3/2) is a truly nonlinear
phenomena, since the linear inviscid damping near Couette is true for any
initial vorticity in L^2
A stationary free boundary problem modeling electrostatic MEMS
A free boundary problem describing small deformations in a membrane based
model of electrostatically actuated MEMS is investigated. The existence of
stationary solutions is established for small voltage values. A justification
of the widely studied narrow-gap model is given by showing that steady state
solutions of the free boundary problem converge toward stationary solutions of
the narrow-gap model when the aspect ratio of the device tends to zero
Cytoplasmic chromatin triggers inflammation in senescence and cancer
Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders
Realistic description of electron-energy loss spectroscopy for One-Dimensional SrCuO
We investigate the electron-energy loss spectrum of one-dimensional undoped
CuO chains within an extended multi-band Hubbard model and an extended
one-band Hubbard model, using the standard Lanczos algorithm. Short-range
intersite Coulomb interactions are explicitly included in these models, and
long-range interactions are treated in random-phase approximation. The results
for the multi-band model with standard parameter values agree very well with
experimental spectra of SrCuO. In particular, the width of the main
structure is correctly reproduced for all values of momentum transfer. It is
shown for both models that intersite Coulomb interactions mainly lead to an
energy shift of the spectra. We find no evidence for enhanced intersite
interactions in SrCuO.Comment: 4 pages, 4 figure
Entanglement, quantum phase transition and scaling in XXZ chain
Motivated by recent development in quantum entanglement, we study relations
among concurrence , SU(2) algebra, quantum phase transition and
correlation length at the zero temperature for the XXZ chain. We find that at
the SU(2) point, the ground state possess the maximum concurrence. When the
anisotropic parameter is deformed, however, its value decreases. Its
dependence on scales as in the XY metallic
phase and near the critical point (i.e. ) of the Ising-like
insulating phase. We also study the dependence of on the correlation length
, and show that it satisfies near the critical point. For
different size of the system, we show that there exists a universal scaling
function of with respect to the correlation length .Comment: 4 pages, 3 figures. to appear in Phys. Rev.
Properties of the Bose glass phase in irradiated superconductors near the matching field
Structural and transport properties of interacting localized flux lines in
the Bose glass phase of irradiated superconductors are studied by means of
Monte Carlo simulations near the matching field B_Phi, where the densities of
vortices and columnar defects are equal. For a completely random columnar pin
distribution in the xy-plane transverse to the magnetic field, our results show
that the repulsive vortex interactions destroy the Mott insulator phase which
was predicted to occur at B = B_Phi. On the other hand, for ratios of the
penetration depth to average defect distance lambda/d <= 1, characteristic
remnants of the Mott insulator singularities remain visible in experimentally
accessible quantities as the magnetization, the bulk modulus, and the
magnetization relaxation, when B is varied near B_Phi. For spatially more
regular disorder, e.g., a nearly triangular defect distribution, we find that
the Mott insulator phase can survive up to considerably large interaction range
\lambda/d, and may thus be observable in experiments.Comment: RevTex, 17 pages, eps files for 12 figures include
Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap
An asymptotically exact many body theory for spin polarized interacting
fermions in a one-dimensional harmonic atom trap is developed using the
bosonization method and including backward scattering. In contrast to the
Luttinger model, backscattering in the trap generates one-particle potentials
which must be diagonalized simultaneously with the two-body interactions.
Inclusion of backscattering becomes necessary because backscattering is the
dominant interaction process between confined identical one-dimensional
fermions. The bosonization method is applied to the calculation of one-particle
matrix elements at zero temperature. A detailed discussion of the validity of
the results from bosonization is given, including a comparison with direct
numerical diagonalization in fermionic Hilbert space. A model for the
interaction coefficients is developed along the lines of the Luttinger model
with only one coupling constant . With these results, particle densities,
the Wigner function, and the central pair correlation function are calculated
and displayed for large fermion numbers. It is shown how interactions modify
these quantities. The anomalous dimension of the pair correlation function in
the center of the trap is also discussed and found to be in accord with the
Luttinger model.Comment: 19 pages, 5 figures, journal-ref adde
Scaling critical behavior of superconductors at zero magnetic field
We consider the scaling behavior in the critical domain of superconductors at
zero external magnetic field. The first part of the paper is concerned with the
Ginzburg-Landau model in the zero magnetic field Meissner phase. We discuss the
scaling behavior of the superfluid density and we give an alternative proof of
Josephson's relation for a charged superfluid. This proof is obtained as a
consequence of an exact renormalization group equation for the photon mass. We
obtain Josephson's relation directly in the form , that
is, we do not need to assume that the hyperscaling relation holds. Next, we
give an interpretation of a recent experiment performed in thin films of
. We argue that the measured mean field like
behavior of the penetration depth exponent is possibly associated with a
non-trivial critical behavior and we predict the exponents and
for the correlation lenght and specific heat, respectively. In the
second part of the paper we discuss the scaling behavior in the continuum dual
Ginzburg-Landau model. After reviewing lattice duality in the Ginzburg-Landau
model, we discuss the continuum dual version by considering a family of
scalings characterized by a parameter introduced such that
, where is the bare mass of the magnetic
induction field. We discuss the difficulties in identifying the renormalized
magnetic induction mass with the photon mass. We show that the only way to have
a critical regime with is having , that
is, with having the scaling behavior of the renormalized photon mass.Comment: RevTex, 15 pages, no figures; the subsection III-C has been removed
due to a mistak
Short-lived Nuclei in the Early Solar System: Possible AGB Sources
(Abridged) We review abundances of short-lived nuclides in the early solar
system (ESS) and the methods used to determine them. We compare them to the
inventory for a uniform galactic production model. Within a factor of two,
observed abundances of several isotopes are compatible with this model. I-129
is an exception, with an ESS inventory much lower than expected. The isotopes
Pd-107, Fe-60, Ca-41, Cl-36, Al-26, and Be-10 require late addition to the
solar nebula. Be-10 is the product of particle irradiation of the solar system
as probably is Cl-36. Late injection by a supernova (SN) cannot be responsible
for most short-lived nuclei without excessively producing Mn-53; it can be the
source of Mn-53 and maybe Fe-60. If a late SN is responsible for these two
nuclei, it still cannot make Pd-107 and other isotopes. We emphasize an AGB
star as a source of nuclei, including Fe-60 and explore this possibility with
new stellar models. A dilution factor of about 4e-3 gives reasonable amounts of
many nuclei. We discuss the role of irradiation for Al-26, Cl-36 and Ca-41.
Conflict between scenarios is emphasized as well as the absence of a global
interpretation for the existing data. Abundances of actinides indicate a
quiescent interval of about 1e8 years for actinide group production in order to
explain the data on Pu-244 and new bounds on Cm-247. This interval is not
compatible with Hf-182 data, so a separate type of r-process is needed for at
least the actinides, distinct from the two types previously identified. The
apparent coincidence of the I-129 and trans-actinide time scales suggests that
the last actinide contribution was from an r-process that produced actinides
without fission recycling so that the yields at Ba and below were governed by
fission.Comment: 92 pages, 14 figure files, in press at Nuclear Physics
- …
